- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following pairs of equations:
$ 43 x+67 y=-24 $
$ 67 x+43 y=24 $
Given:
\( 43 x+67 y=-24 \)
\( 67 x+43 y=24 \)
To do:
We have to solve the given pairs of equations.
Solution:
\( 43 x+67 y=-24 \)......(i)
\( 67 x+43 y=24 \).........(ii)
Multiplying (i) by 43 and (ii) by 67 and subtracting the results, we get,
$43(43x+67y)=43(-24)$
$43^2x+43(67)y=24(-43)$.........(iii)
$67(67x+43y)=67(24)$
$67^2x+43(67)y=24(67)$.......(iv)
Subtracting (iii) from (iv), we get,
$(67^2-43^2)x=24(67+43)$
$(67+43)(67-43)x=24(110)$
$110(24)x=24(110)$
$x=1$
This implies,
$43(1)+67y=-24$
$67y=-24-43$
$67y=-67$
$y=-1$
Therefore,
$x=1$
$y=-1$
- Related Articles
- Solve the following pairs of equations:\( x+y=3.3 \)\( \frac{0.6}{3 x-2 y}=-1,3 x-2 y ≠ 0 \)
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- Solve the following pairs of equations:\( 4 x+\frac{6}{y}=15 \)\( 6 x-\frac{8}{y}=14, y ≠ 0 \)
- Subtract $24 x y-10 y-18 x$ from $30 x y +12 y+14 x$
- Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- Solve the following system of equations:$x+y=2xy$$\frac{x-y}{xy}=6$
- Solve the following pairs of equations:\( \frac{x}{3}+\frac{y}{4}=4 \)\( \frac{5 x}{6}-\frac{y}{8}=4 \)
- Solve the following system of equations:$\frac{22}{x+y} +\frac{15}{x-y}=5$$\frac{55}{x+y}+\frac{45}{x-y}=14$
- Solve the following system of equations:$\frac{5}{x+y} -\frac{2}{x-y}=-1$$\frac{15}{x+y}+\frac{7}{x-y}=10$
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following system of equations:$\frac{44}{x+y} +\frac{30}{x-y}=10$$\frac{55}{x+y}+\frac{40}{x-y}=13$
- Solve the following system of equations:$\frac{10}{x+y} +\frac{2}{x-y}=4$$\frac{15}{x+y}-\frac{9}{x-y}=-2$
- Write two solutions of the form $x = 0, y = a$ and $x = b, y = 0$ for each of the following equations.$2x + 3y = 24$
- Solve the following system of equations:$x-y+z=4$$x+y+z=2$$2x+y-3z=0$
- Solve the following pair of equations by reducing them to a pair of linear equations$ 6 x+3 y=6 x y $$2 x+4 y=5 x y $

Advertisements