- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following equations.
$ \frac{3 y+4}{2-6 y}=\frac{-2}{5} $.
Given:
\( \frac{3 y+4}{2-6 y}=\frac{-2}{5} \)
To do:
We have to solve the given equation.
Solution:
$\frac{3 y+4}{2-6 y}=\frac{-2}{5}$
$\Rightarrow 5(3y+4)=(-2) \times(2-6y)$ [On cross multiplication]
$\Rightarrow 15y+20=-4+12y$
$\Rightarrow 15y-12y=-4-20$
$\Rightarrow 3y=-24$
$\Rightarrow y=\frac{-24}{3}$
$\Rightarrow y=-8$
The value of $y$ is $-8$.
- Related Articles
- Solve: $\frac{3 y+4}{2-6 y}=\frac{-2}{5}$.
- Solve the following equations.\( \frac{7 y+4}{y+2}=\frac{-4}{3} \).
- Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 13$$\frac{5}{x}\ –\ \frac{4}{y}\ =\ -2$
- Solve the following system of equations: $\frac{x}{7}\ +\ \frac{y}{3}\ =\ 5$ $\frac{x}{2}\ –\ \frac{y}{9}\ =\ 6$
- Solve the following system of equations:$\frac{5}{x-1} +\frac{1}{y-2}=2$$\frac{6}{x-1}-\frac{3}{y-2}=1$
- Solve:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
- Solve the following$\frac{7 y+4}{y+2}=\frac{-4}{3} $
- Solve the following pairs of equations:\( \frac{x}{3}+\frac{y}{4}=4 \)\( \frac{5 x}{6}-\frac{y}{8}=4 \)
- Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 2$ $\frac{4}{x}\ –\ \frac{9}{y}\ =\ -1$
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following equations and check your results.\( 2 y+\frac{5}{3}=\frac{26}{3}-y \).
- Solve the following:$\frac{y-1}{3}-\frac{y-2}{4}=1$
- Solve the following system of equations: $x\ +\ \frac{y}{2}\ =\ 4$ $2y\ +\ \frac{x}{3}\ =\ 5$
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Solve the following system of equations: $\frac{3}{x}\ –\ \frac{1}{y}\ =\ −9$ $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 5$

Advertisements