- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following equations:
$(a).\ 10p=100$
$(b).\ 10p+10=100$
$(c).\ \frac{p}{4}=5$
$(d).\ \frac{-p}{3}=5$
$(e).\ \frac{3p}{4}=6$
$(f).\ 3s=-9$
$(g).\ 3s+12=0$
$(h).\ 3s=0$
$(i).\ 2q=6$
$(j).\ 2q-6=0$
$(k).\ 2q+6=0$
$(l).\ 2q+6=12$
To do:
We have to solve the given equations.
Solution:
(a) $10p=100$
Dividing both the sides by 10 we get,
$\frac{10p}{10}=\frac{100}{10}$
$p=10$
(b) $10p+10 =100$
Subtracting 10 from both sides we get,
$10p+10-10=100-10$
$10p=90$
Dividing both the sides by 10 we get,
$\frac{10p}{10}=\frac{90}{10}$
$p=9$
(c) $\frac{p}{4}=5$
Multiplying both the sides by 4 we get,
$(\frac{p}{4})\times 4=5\times 4$
$p=20$
(d) $\frac{-p}{3}=5$
Multiplying both the sides by $-3$, we get,
$(\frac{-p}{3})\times (-3)=5\times (-3)$
$p =-15$
(e) $\frac{3p}{4}=6$
Multiplying both the sides by 4, we get,
$(\frac{3p}{4})\times 4=6\times 4$
$3p=24$
Dividing both the sides by 3 we get,
$\frac{3p}{3}=\frac{24}{3}$
$p=8$
(f) $3s=-9$
Dividing both the sides by 3,
$\frac{3s}{3}=\frac{-9}{3}$
$s=-3$
(g) $3s+12=0$
Subtracting 12 from both the sides of the equation we get,
$3s+12- 12=0- 12$
$3s =-12$
Dividing both the sides by 3 we get,
$\frac{3s}{3}=\frac{-12}{3}$
$s=-4$
(h) $3s=0$
Dividing both the sides by 3 we get,
$\frac{3s}{3}=\frac{0}{3}$
$s=0$
(i) $2q=6$
Dividing both the sides by 2 we get,
$\frac{2q}{2}=\frac{6}{2}$
$q=3$
(j) $2q- 6=0$
Adding 6 to both sides of the equation we get,
$2q- 6+6=0+6$
$2q=6$
Dividing both the sides by 2 we get,
$\frac{2q}{2}=\frac{6}{2}$
$q=3$
(k) $2q+6=0$
Subtracting 6 from both the sides of the equation we get,
$2q+6-6=0- 6$
$2q =- 6$
Dividing both the sides by 2 we get,
$\frac{2q}{2}=-\frac{6}{2}$
$q=-3$
(l) $2q+6 =12$
Subtracting 6 from both the sides of the equation we get,
$2q+6-6=12-6$
$2q=6$
Dividing both the sides by 2 we get,
$\frac{2q}{2}=\frac{6}{2}$
$q=3$