Solve each of the following equations and also check your results in each case: (i) $\frac{7y+2}{5}=\frac{6y-5}{11}$ (ii) $x-2x+2-\frac{16}{3}x+5=3-\frac{7}{2}x$
Given:
The given equations are:
(i) $\frac{7y+2}{5}=\frac{6y-5}{11}$
(ii) $x-2x+2-\frac{16}{3}x+5=3-\frac{7}{2}x$
To do:
We have to solve the given equations and check the results.
Solution:
To check the results we have to find the values of the variables and substitute them in the equation. Find the value of LHS and the value of RHS and check whether both are equal.
(i) The given equation is $\frac{7y+2}{5}=\frac{6y-5}{11}$.
$\frac{7y+2}{5}=\frac{6y-5}{11}$
On cross multiplication, we get,
$(7y+2)\times11=5(6y-5)$
$11(7y)+11(2)=5(6y)-5(5)$
$77y+22=30y-25$
$77y-30y=-25-22$
$47y=-47$
$y=\frac{-47}{47}$
$y=-1$
Verification:
LHS $=\frac{7y+2}{5}$
$=\frac{7(-1)+2}{5}$
$=\frac{-7+2}{5}$
$=\frac{-5}{5}$
$=-1$
RHS $=\frac{6y-5}{11}$
$=\frac{6(-1)-5}{11}$
$=\frac{-6-5}{11}$
$=\frac{-11}{11}$
$=-1$
LHS $=$ RHS
Hence verified.
(ii) The given equation is $x-2x+2-\frac{16}{3}x+5=3-\frac{7}{2}x$
$x-2x+2-\frac{16}{3}x+5=3-\frac{7}{2x}$
On rearranging, we get,
$x-2x-\frac{16}{3}x+\frac{7}{2}x=3-2-5$
$-x-\frac{16}{3}x+\frac{7}{2}x=3-7$
$x(-1-\frac{16}{3}+\frac{7}{2})=-4$
LCM of denominators $3$ and $2$ is $6$
$x(\frac{-1\times6-16\times2+7\times3}{6})=-4$
$x(\frac{-6-32+21}{6})=-4$
$x(\frac{-38+21}{6})=-4$
$x(\frac{-17}{6})=-4$
On cross multiplication, we get,
$-17x=(-4)\times6$
$-17x=-24$
$x=\frac{-24}{-17}$
$x=\frac{24}{17}$
Verification:
LHS $=x-2x+2-\frac{16}{3}x+5$
$=\frac{24}{17}-2(\frac{24}{17})+2-\frac{16}{3}(\frac{24}{17})+5$
$=\frac{24}{17}-\frac{48}{17}+2-\frac{16\times24}{3\times17}+5$
$=\frac{24-48}{17}+7-\frac{16\times8}{17}$
$=\frac{-24}{17}-\frac{128}{17}+7$
$=\frac{-24-128+7\times17}{17}$
$=\frac{-152+119}{17}$
$=\frac{-33}{17}$
RHS $=3-\frac{7}{2}x$
$=3-\frac{7}{2}(\frac{24}{17})$
$=3-\frac{7\times24}{2\times17}$
$=3-\frac{7\times12}{17}$
$=\frac{3\times17-84}{17}$
$=\frac{51-84}{17}$
$=\frac{-33}{17}$
LHS $=$ RHS
Hence verified.
Related Articles Solve each of the following equations and also check your results in each case: (i) $\frac{3x}{4}-\frac{x-1}{2}=\frac{x-2}{3}$ (ii) $\frac{5x}{3}-\frac{(x-1)}{4}=\frac{(x-3)}{5}$
Solve each of the following equations and also check your results in each case: (i) $\frac{(3a-2)}{3}+\frac{(2a+3)}{2}=a+\frac{7}{6}$ (ii) $x-\frac{(x-1)}{2}=1-\frac{(x-2)}{3}$
Solve each of the following equations and also check your results in each case: (i) $\frac{3x+1}{16}+\frac{2x-3}{7}=\frac{x+3}{8}+\frac{3x-1}{14}$ (ii) $\frac{1-2x}{7}-\frac{2-3x}{8}=\frac{3}{2}+\frac{x}{4}$
Solve: $\frac{2}{5} x-2=-\frac{3}{5} x+5$.
Solve each of the following equations and also check your results in each case: (i) $\frac{2x+5}{3}=3x-10$ (ii) $\frac{a-8}{3}=\frac{a-3}{2}$
Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
Solve each of the following equations and also check your results in each case: (i) $\frac{45-2x}{15}-\frac{4x+10}{5}=\frac{15-14x}{9}$ (ii) $\frac{5(7x+5)}{3}-\frac{23}{3}=13-\frac{4x-2}{3}$
Solve each of the following equations and also verify your solution: (i) $\frac{2x}{3}-\frac{3x}{8}=\frac{7}{12}$ (ii) $(x+2)(x+3)+(x-3)(x-2)-2x(x+1)=0$
Solve:\( \frac{3 x}{5}+4+x-2=\frac{\frac{3 x}{5} \times x}{2} \)
Solve each of the following equations and also verify your solution: (i) $\frac{x}{2}-\frac{4}{5}+\frac{x}{5}+\frac{3x}{10}=\frac{1}{5}$ (ii) $\frac{7}{x}+35=\frac{1}{10}$
Solve each of the following equations and also check your results in each case: (i) $\frac{7x-1}{4}-\frac{1}{3}(2x-\frac{1-x}{2})=\frac{10}{3}$ (ii) $0.5\frac{(x-0.4)}{0.35}-0.6(\frac{x-2.71}{0.42})=x+6.1$
Solve the following equations and check your results.\( \frac{2 x}{3}+1=\frac{7 x}{15}+3 \).
Solve: $\frac{4 x-5}{6 x+3}=\frac{2 x-5}{3 x-2}$.
Solve each of the following equations and also check your results in each case: (i) $6.5x+(\frac{19.5x-32.5}{2})=6.5x+13+\frac{13x-26}{2}$ (ii) $(3x-8)(3x+2)-(4x-11)(2x+1)=(x-3)(x+7)$
Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
Kickstart Your Career
Get certified by completing the course
Get Started