
http://www.tutorialspoint.com/software_architecture_design/component_based_architecture.htm
Copyright © tutorialspoint.com

COMPONENT-BASED ARCHITECTURECOMPONENT-BASED ARCHITECTURE

Component-based architecture focuses on the decomposition of the design into individual
functional or logical components that represent well-defined communication interfaces containing
methods, events, and properties. It provides a higher level of abstraction and divides the problem
into sub-problems, each associated with component partitions.

The primary objective of component-based architecture is to ensure component reusability. A
component encapsulates functionality and behaviors of a software element into a reusable and
self-deployable binary unit. There are many standard component frameworks such as COM/DCOM,
JavaBean, EJB, CORBA, .NET, web services, and grid services. These technologies are widely used
in local desktop GUI application design such as graphic JavaBean components, MS ActiveX
components, and COM components which can be reused by simply drag and drop operation.

Component-oriented software design has many advantages over the traditional object-oriented
approaches such as −

Reduced time in market and the development cost by reusing existing components.

Increased reliability with the reuse of the existing components.

What is a Component?
A component is a modular, portable, replaceable, and reusable set of well-defined functionality
that encapsulates its implementation and exporting it as a higher-level interface.

A component is a software object, intended to interact with other components, encapsulating
certain functionality or a set of functionalities. It has an obviously defined interface and conforms
to a recommended behavior common to all components within an architecture.

A software component can be defined as a unit of composition with a contractually specified
interface and explicit context dependencies only. That is, a software component can be deployed
independently and is subject to composition by third parties.

Views of a Component
A component can have three different views − object-oriented view, conventional view, and
process-related view.

Object-oriented view

A component is viewed as a set of one or more cooperating classes. Each problem domain class 
analysis and infrastructure class design are explained to identify all attributes and operations that
apply to its implementation. It also involves defining the interfaces that enable classes to
communicate and cooperate.

Conventional view

It is viewed as a functional element or a module of a program that integrates the processing logic,
the internal data structures that are required to implement the processing logic and an interface

http://www.tutorialspoint.com/software_architecture_design/component_based_architecture.htm


that enables the component to be invoked and data to be passed to it.

Process-related view

In this view, instead of creating each component from scratch, the system is building from existing
components maintained in a library. As the software architecture is formulated, components are
selected from the library and used to populate the architecture.

A user interface UI component includes grids, buttons referred as controls, and utility
components expose a specific subset of functions used in other components.

Other common types of components are those that are resource intensive, not frequently
accessed, and must be activated using the just-in-time JIT approach.

Many components are invisible which are distributed in enterprise business applications and
internet web applications such as Enterprise JavaBean EJB, .NET components, and CORBA
components.

Characteristics of Components
Reusability − Components are usually designed to be reused in different situations in
different applications. However, some components may be designed for a specific task.

Replaceable − Components may be freely substituted with other similar components.

Not context specific − Components are designed to operate in different environments and
contexts.

Extensible − A component can be extended from existing components to provide new
behavior.

Encapsulated − A A component depicts the interfaces, which allow the caller to use its
functionality, and do not expose details of the internal processes or any internal variables or
state.

Independent − Components are designed to have minimal dependencies on other
components.

Principles of Component−Based Design
A component-level design can be represented by using some intermediary representation 
e. g. graphical, tabular, ortext − based that can be translated into source code. The design of data
structures, interfaces, and algorithms should conform to well-established guidelines to help us
avoid the introduction of errors.

It has following salient features −

The software system is decomposed into reusable, cohesive, and encapsulated component
units.

Each component has its own interface that specifies required ports and provided ports; each
component hides its detailed implementation.

A component should be extended without the need to make internal code or design
modifications to the existing parts of the component.

Depend on abstractions component do not depend on other concrete components, which
increase difficulty in expendability.

Connectors connected components, specifying and ruling the interaction among
components. The interaction type is specified by the interfaces of the components.

Components interaction can take the form of method invocations, asynchronous invocations,
broadcasting, message driven interactions, data stream communications, and other protocol
specific interactions.

For a server class, specialized interfaces should be created to serve major categories of



clients. Only those operations that are relevant to a particular category of clients should be
specified in the interface.

A component can extend to other components and still offer its own extension points. It is the
concept of plug-in based architecture. This allows a plugin to offer another plugin API.

Component-Level Design Guidelines
It creates a naming conventions for components that are specified as part of the architectural
model and then refines or elaborates as part of the component-level model.

Attains architectural component names from the problem domain and ensures that they
have meaning to all stakeholders who view the architectural model.

Extracts the business process entities that can exist independently without any associated
dependency on other entities.

Recognizes and discover these independent entities as new components.

Uses infrastructure component names that reflect their implementation-specific meaning.

Models any dependencies from left to right and inheritance from top baseclass to bottom 
derivedclasses.

Model any component dependencies as interfaces rather than representing them as a direct
component-to-component dependency.

Conducting Component-Level Design
It recognizes all design classes that correspond to the problem domain as defined in the analysis
model and architectural model.

This design has following important features −

Recognizes all design classes that correspond to the infrastructure domain.

Describes all design classes that are not acquired as reusable components, and specifies
message details.

Identifies appropriate interfaces for each component and elaborates attributes and defines
data types and data structures required to implement them.

Describes processing flow within each operation in detail by means of pseudo code or UML
activity diagrams.

Describes persistent data sources databasesandfiles and identifies the classes required to
manage them.

Develops and elaborates behavioral representations for a class or component. This can be
done by elaborating the UML state diagrams created for the analysis model and by
examining all use cases that are relevant to the design class.

Elaborates deployment diagrams to provide additional implementation detail.



Demonstrates the location of key packages or classes of components in a system by using
class instances and designating specific hardware and operating system environment.

The final decision can be made by using established design principles and guidelines.
Experienced designers consider all ormost of the alternative design solutions before settling
on the final design model.

Advantages
Ease of deployment − As new compatible versions become available, it is easier to replace
existing versions with no impact on the other components or the system as a whole.

Reduced cost − The use of third-party components allows you to spread the cost of
development and maintenance.

Ease of development − Components implement well-known interfaces to provide defined
functionality, allowing development without impacting other parts of the system.

Reusable − The use of reusable components means that they can be used to spread the
development and maintenance cost across several applications or systems.

Modification of technical complexity − A component modifies the complexity through
the use of a component container and its services.

Reliability − The overall system reliability increases since the reliability of each individual
component enhances the reliability of the whole system via reuse.

System maintenance and evolution − Easy to change and update the implementation
without affecting the rest of the system.

Independent − Independency and flexible connectivity of components. Independent
development of components by different group in parallel. Productivity for the software
development and future software development.

Loading [MathJax]/jax/output/HTML-CSS/jax.js


