
http://www.tutorialspoint.com/soap/soap_encoding.htm Copyright © tutorialspoint.com

SOAP - ENCODINGSOAP - ENCODING

SOAP includes a built-in set of rules for encoding data types. It enables the SOAP message to
indicate specific data types, such as integers, floats, doubles, or arrays.

SOAP data types are divided into two broad categories − scalar types and compound types.

Scalar types contain exactly one value such as a last name, price, or product description.

Compound types contain multiple values such as a purchase order or a list of stock quotes.

Compound types are further subdivided into arrays and structs.

The encoding style for a SOAP message is set via the SOAP-ENV:encodingStyle attribute.

To use SOAP 1.1 encoding, use the value http://schemas.xmlsoap.org/soap/encoding/

To use SOAP 1.2 encoding, use the value http://www.w3.org/2001/12/soap-encoding

Latest SOAP specification adopts all the built-in types defined by XML Schema. Still, SOAP
maintains its own convention for defining constructs not standardized by XML Schema, such
as arrays and references.

Scalar Types
For scalar types, SOAP adopts all the built-in simple types specified by the XML Schema
specification. This includes strings, floats, doubles, and integers.

The following table lists the main simple types, excerpted from the XML Schema Part 0 − Primer
http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/

Simple Types Built-In to XML Schema

Simple Type Examples

string Confirm this is electric.

boolean true, false, 1, 0.

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN.

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN.

decimal -1.23, 0, 123.4, 1000.00.

binary 100010

integer -126789, -1, 0, 1, 126789.

nonPositiveInteger -126789, -1, 0.

negativeInteger -126789, -1.

long -1, 12678967543233

int -1, 126789675

short -1, 12678

byte -1, 126

nonNegativeInteger 0, 1, 126789

http://www.tutorialspoint.com/soap/soap_encoding.htm
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/

unsignedLong 0, 12678967543233

unsignedInt 0, 1267896754

unsignedShort 0, 12678

unsignedByte 0, 126

positiveInteger 1, 126789.

date 1999-05-31, ---05.

time 13:20:00.000, 13:20:00.000-05:00

For example, here is a SOAP response with a double data type −

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>
 <ns1:getPriceResponse xmlns:ns1="urn:examples:priceservice" SOAP-
ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <return xsi:type="xsd:double">54.99</return>

 </ns1:getPriceResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Compound Types
SOAP arrays have a very specific set of rules, which require that you specify both the element type
and array size. SOAP also supports multidimensional arrays, but not all SOAP implementations
support multidimensional functionality.

To create an array, you must specify it as an xsi:type of array. The array must also include an
arrayType attribute. This attribute is required to specify the data type for the contained elements
and the dimensions of the array.

For example, the following attribute specifies an array of 10 double values −

arrayType = "xsd:double[10]"

In contrast, the following attribute specifies a two-dimensional array of strings −

arrayType = "xsd:string[5,5]"

Here is a sample SOAP response with an array of double values −

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>
 <ns1:getPriceListResponse xmlns:ns1="urn:examples:pricelistservice" SOAP-
ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <return xmlns:ns2="http://www.w3.org/2001/09/soap-encoding"
xsi:type="ns2:Array" ns2:arrayType="xsd:double[2]">
 <item xsi:type="xsd:double">54.99</item>

 <item xsi:type="xsd:double">19.99</item>
 </return>

 </ns1:getPriceListResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Structs contain multiple values, but each element is specified with a unique accessor element. For
example, consider an item within a product catalog. In this case, the struct might contain a product
SKU, product name, description, and price. Here is how such a struct would be represented in a
SOAP message −

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>
 <ns1:getProductResponse xmlns:ns1="urn:examples:productservice" SOAP-
ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <return xmlns:ns2="urn:examples" xsi:type="ns2:product">
 <name xsi:type="xsd:string">Red Hat Linux</name>
 <price xsi:type="xsd:double">54.99</price>

 <description xsi:type="xsd:string">
 Red Hat Linux Operating System
 </description>
 <SKU xsi:type="xsd:string">A358185</SKU>
 </return>

 </ns1:getProductResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

NOTE − Please take care of proper indentation while you write your SOAP code. Each element in a
struct is specified with a unique accessor name. For example, the message above includes four
accessor elements − name, price, description, and SKU. Each element can have its own data type.
For example, name is specified as a string, whereas price is specified as double.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

