- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify the following using the identities:
(i) $\frac{((58)^2 – (42)^2)}{16}$
(ii) $178 \times 178 – 22 \times 22$
(iii) $\frac{(198 \times 198 – 102 \times 102)}{96}$
(iv) $1.73 \times 1.73 – 0.27 \times 0.27$
(v) $\frac{(8.63 \times 8.63 – 1.37 \times 1.37)}{0.726}$
Given:
(i) $\frac{((58)^2 – (42)^2)}{16}$
(ii) $178 \times 178 – 22 \times 22$
(iii) $\frac{(198 \times 198 – 102 \times 102)}{96}$
(iv) $1.73 \times 1.73 – 0.27 \times 0.27$
(v) $\frac{(8.63 \times 8.63 – 1.37 \times 1.37)}{0.726}$
To do:
We have to simplify the given expressions using suitable identities.
Solution:
Here, we have to simplify the given expressions. The given expressions(numerators in the expressions) are in the form of difference of two square numbers. We can simplify the given expressions by using the identity $a^2-b^2=(a+b) \times (a-b)$.
(i) The given expression is $\frac{((58)^2 – (42)^2)}{16}$
Here, $a=58$ and $b=42$
Therefore,
$\frac{((58)^2 – (42)^2)}{16}=\frac{(58+42) \times (58-42)}{16}$
$\frac{((58)^2 – (42)^2)}{16}=\frac{100\times16}{16}$
$\frac{((58)^2 – (42)^2)}{16}=100$
Hence, $\frac{((58)^2 – (42)^2)}{16}=100$.
(ii) The given expression is $178 \times 178 – 22 \times 22$
$178 \times 178 – 22 \times 22=(178)^2-(22)^2$
Here, $a=58$ and $b=42$
Therefore,
$178 \times 178 – 22 \times 22=(178)^2-(22)^2$
$178 \times 178 – 22 \times 22=(178+22) \times (178-22)$
$178 \times 178 – 22 \times 22=200\times156$
$178 \times 178 – 22 \times 22=31200$
(iii) The given expression is $\frac{(198 \times 198 – 102 \times 102)}{96}$
The numerator can be written as $198 \times 198 – 102 \times 102=(198)^2-(102)^2$
Here, $a=198$ and $b=102$
Therefore,
$\frac{((198)^2 – (102)^2)}{96}=\frac{(198+102) \times (198-102)}{96}$
$\frac{((198)^2 – (102)^2)}{96}=\frac{300\times96}{96}$
$\frac{((198)^2 – (102)^2)}{96}=300$
Hence, $\frac{(198 \times 198 – 102 \times 102)}{96}=300$.
(iv) The given expression is $1.73 \times 1.73 – 0.27 \times 0.27$
$1.73 \times 1.73 – 0.27 \times 0.27=(1.73)^2-(0.27)^2$
Here, $a=1.73$ and $b=0.27$
Therefore,
$1.73 \times 1.73 – 0.27 \times 0.27=(1.73)^2-(0.27)^2$
$1.73 \times 1.73 – 0.27 \times 0.27=(1.73+0.27) \times (1.73-0.27)$
$1.73 \times 1.73 – 0.27 \times 0.27=2.00\times1.46$
$1.73 \times 1.73 – 0.27 \times 0.27=2.92$
Hence, $1.73 \times 1.73 – 0.27 \times 0.27=2.92$
(v) The given expression is $\frac{(8.63 \times 8.63 – 1.37 \times 1.37)}{0.726}$
The numerator can be written as $8.63 \times 8.63 – 1.37 \times 1.37=(8.63)^2-(1.37)^2$
Here, $a=8.63$ and $b=1.37$
Therefore,
$\frac{((8.63)^2 – (1.37)^2)}{0.726}=\frac{(8.63+1.37) \times (8.63-1.37)}{0.726}$
$\frac{((8.63)^2 – (1.37)^2)}{0.726}=\frac{10.00\times7.26}{0.726}$
$\frac{((8.63)^2 – (1.37)^2)}{0.726}=\frac{72.6}{0.726}$
$\frac{((8.63)^2 – (1.37)^2)}{0.726}=\frac{726\times10^{-1}}{726\times10^{-3}}$
$\frac{((8.63)^2 – (1.37)^2)}{0.726}=10^{-1+3}$
$\frac{((8.63)^2 – (1.37)^2)}{0.726}=10^2$
$\frac{((8.63)^2 – (1.37)^2)}{0.726}=100$
Hence, $\frac{(8.63 \times 8.63 – 1.37 \times 1.37)}{0.726}=100$.
- Related Articles
- Using suitable identity, evaluate the following.(a) \( (102)^{2} \)(b) \( (98)^{2} \)(c) \( 104 \times 105 \)(d) \( 215^{2}-205^{2} \)(e) \( 100.4 \times 99.6 \)(f) \( \frac{5.27 \times 5.27-0.27 \times 0.27}{5.54} \)
- Simplify each of the following:\( 322 \times 322-2 \times 322 \times 22+22 \times 22 \)
- Evaluate the following:(i) $102 \times 106$(ii) $109 \times 107$(iii) $35 \times 37$(iv) $53 \times 55$(v) $103 \times 96$(vi) $34 \times 36$(vii) $994 \times 1006$
- Simplify the following using suitable properties:$\frac{3}{4} \times (4 \times \frac{7}{8})+ \frac{1}{2} \times ( 2 \times \frac{5}{7})$.
- Find the product:$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$$(ii)$. $\frac{3}{10}\times(-9)$$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
- Solve the following:$(-22) \times [(-22) \times (-4)] +[(-22) \times (-5)]$
- Simplify the following:$\frac{5}{9}-(2\times \frac{3}{5}) - (3\times \frac{3}{5} \times 0)$
- Evaluate: $ 4^{-2} \times 3^{4} \times 5^{2}=? $A) $ \frac{81}{16 \times 25} $B) $ \frac{16 \times 25}{81} $C) $ \frac{1}{81 \times 25} $D) $ \frac{81 \times 25}{16} $
- Observe the following pattern\( (1 \times 2)+(2 \times 3)=\frac{2 \times 3 \times 4}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)=\frac{3 \times 4 \times 5}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)=\frac{4 \times 5 \times 6}{3} \)and find the value of\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+(5 \times 6) \)
- Fill in the blanks:(i) \( -4 \times \frac{7}{9}=\frac{7}{9} \times -4 \)(ii) \( \frac{5}{11} \times \frac{-3}{8}=\frac{-3}{8} \times\frac{5}{11} \)(iii) \( \frac{1}{2} \times\left(\frac{3}{4}+\frac{-5}{12}\right)=\frac{1}{2} \times(\frac{3}{4})+\frac{1}{2} \times \frac{-5}{12}\)(iv) $\frac{-4}{5} \times(\frac{5}{7} \times \frac{-8}{9})=(\frac{-4}{5} \times$____ ) $\times\frac{-8}{9}$
- Simplify: \( \frac{2^{2} \times 3^{4} \times 2^{5}}{2^{4} \times 9} \)
- Name the property of multiplication of rational numbers illustrated by the following statements:(i) \( \frac{-5}{16} \times \frac{8}{15}=\frac{8}{15} \times \frac{-5}{16} \)(ii) \( \frac{-17}{5} \times 9=9 \times \frac{-17}{5} \)(iii) \( \frac{7}{4} \times\left(\frac{-8}{3}+\frac{-13}{12}\right)=\frac{7}{4} \times \frac{-8}{3}+\frac{7}{4} \times \frac{-13}{12} \)(iv) \( \frac{-5}{9} \times\left(\frac{4}{15} \times \frac{-9}{8}\right)=\left(\frac{-5}{9} \times \frac{4}{15}\right) \times \frac{-9}{8} \)(v) \( \frac{13}{-17} \times 1=\frac{13}{-17}=1 \times \frac{13}{-17} \)(vi) \( \frac{-11}{16} \times \frac{16}{-11}=1 \)(vii) \( \frac{2}{13} \times 0=0=0 \times \frac{2}{13} \)(viii) \( \frac{-3}{2} \times \frac{5}{4}+\frac{-3}{2} \times \frac{-7}{6}=\frac{-3}{2} \times (\frac{5}{4}+\frac{-7}{6}) \)
- Multiply and reduce to lowest form and convert into a mixed fraction:(i) $7\times\frac{1}{5}$(ii) $ 4\times\frac{1}{3}$(iii) $2\times\frac{6}{7}$ (iv) $5\times\frac{2}{9}$ (v) $\frac{2}{3}\times 4$(vi) $\frac{5}{2}\times 6$ (vii) $11\times\frac{4}{7}$ (viii) $20\times\frac{4}{5}$ (ix) $13\frac{1}{3}$ (x) $15\times\frac{3}{5}$
- Mention the property used in the following expression:$(-2) \times[3 \times(\frac{1}{2})]]=[[(-2) \times 3] \times(\frac{1}{2})$.
- Simplify:\( \frac{2}{3} \times \frac{5}{44} \times \frac{33}{35} \)
