Here are a few basic signals:

Unit Step Function

Unit step function is denoted by $u(t)$. It is defined as $u(t) = \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases}$

- It is used as best test signal.
- Area under unit step function is unity.

Unit Impulse Function

Impulse function is denoted by $\delta(t)$, and it is defined as $\delta(t) = \begin{cases} 1 & t = 0 \\ 0 & t \neq 0 \end{cases}$

$$\int_{-\infty}^{\infty} \delta(t) dt = u(t)$$

$$\delta(t) = \frac{du(t)}{dt}$$

Ramp Signal

Ramp signal is denoted by $r(t)$, and it is defined as $r(t) = \begin{cases} t & t \geq 0 \\ 0 & t < 0 \end{cases}$
Area under unit ramp is unity.

Parabolic Signal

Parabolic signal can be defined as $x(t) = \begin{cases} \frac{t^2}{2} & t \geq 0 \\ 0 & t < 0 \end{cases}$

\[
\int u(t) = \int 1 = t = r(t)
\]

\[
u(t) = \frac{dr(t)}{dt}
\]

\[
\int u(t)dt = \int r(t)dt = \int tdt = \frac{t^2}{2} = \text{parabolic signal}
\]

\[
\Rightarrow u(t) = \frac{d^2 x(t)}{dt^2}
\]

\[
\Rightarrow r(t) = \frac{dx(t)}{dt}
\]

Signum Function

Signum function is denoted as $\text{sgn} t$. It is defined as $\text{sgn} t = \begin{cases} 1 & t > 0 \\ 0 & t = 0 \\ -1 & t < 0 \end{cases}$
sgnt = 2ut - 1

Exponential Signal

Exponential signal is in the form of \(xt = e^{\alpha t} \).

The shape of exponential can be defined by \(\alpha \).

Case i: if \(\alpha = 0 \) \(\rightarrow \) \(xt = e^0 = 1 \)

Case ii: if \(\alpha < 0 \) i.e. -ve then \(xt = e^{-\alpha t} \). The shape is called decaying exponential.

Case iii: if \(\alpha > 0 \) i.e. +ve then \(xt = e^{\alpha t} \). The shape is called raising exponential.

Rectangular Signal

Let it be denoted as \(xt \) and it is defined as

\[
x(t) = A \text{ rect} \left(\frac{r}{T} \right)
\]

Example: \(4 \text{ rect} \left[\frac{r}{6} \right] \)
Triangular Signal

Let it be denoted as \(x(t) \)

\[
x(t) = A \left[1 - \frac{|t|}{T} \right]
\]

Sinusoidal Signal

Sinusoidal signal is in the form of \(x(t) = A \cos(\omega_0 t + \phi) \) or \(A \sin(\omega_0 t + \phi) \)

\[
\text{sinc}(t) = \frac{\sin(\pi t)}{\pi t}
\]

Where \(T_0 = \frac{2\pi}{\omega_0} \)

Sinc Function

It is denoted as \(\text{sinc}(t) \) and it is defined as

\[
\text{sinc}(t) = \begin{cases}
\frac{\sin(\pi t)}{\pi t} & \text{for } t \neq 0 \\
0 & \text{for } t = 0
\end{cases}
\]

= 0 for \(t = \pm 1, \pm 2, \pm 3 \ldots \)
Sampling Function

It is denoted as $sa(t)$ and it is defined as

$$sa(t) = \frac{sint}{t}$$

$$= 0 \text{ for } t = \pm \pi, \pm 2\pi, \pm 3\pi \ldots$$