
Selenium Webdriver        

   i 

 



Selenium Webdriver        

   i 

 

About the Tutorial 

Selenium Webdriver is a robust tool for testing the front end of an application and to 

perform tasks on the browser. Selenium tests can be created in multiple programming 

languages like Python, Java, and so on. This tutorial shall provide you with a detailed 

understanding on Selenium in Python language and its salient features.  

Audience 

This tutorial is designed for professionals working in software testing who want to 

improve their knowledge on front end testing. The tutorial contains a good amount of 

hands-example on all important topics in Selenium with Python. 

Prerequisites 

Before going through this tutorial, you should have knowledge on Python programming. 

Also, understanding software testing is needed to start with this tutorial.  

Copyright & Disclaimer 

 Copyright 2021 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point 

(I) Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or 

republish any contents or a part of contents of this e-book in any manner without written 

consent of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely 

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) 

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of 

our website or its contents including this tutorial. If you discover any errors on our 

website or in this tutorial, please notify us at contact@tutorialspoint.com 

 

 

 

 

 

 

  

mailto:contact@tutorialspoint.com


Selenium Webdriver        

   ii 

 

Table of Contents 

About the Tutorial ............................................................................................................................................ i 

Audience ........................................................................................................................................................... i 

Prerequisites ..................................................................................................................................................... i 

Copyright & Disclaimer ..................................................................................................................................... i 

Table of Contents ............................................................................................................................................ ii 

1. Selenium Webdriver – Introduction .......................................................................................................... 1 

2. Selenium Webdriver — Installation .......................................................................................................... 2 

3. Selenium Webdriver — Browser Navigation ............................................................................................. 7 

4. Selenium Webdriver — Identify Single Element ........................................................................................ 8 

By Id ................................................................................................................................................................. 8 

By Name .......................................................................................................................................................... 9 

By ClassName ................................................................................................................................................ 11 

By TagName ................................................................................................................................................... 12 

By Link Text .................................................................................................................................................... 14 

By Partial Link Text ........................................................................................................................................ 15 

By CSS Selector .............................................................................................................................................. 17 

ByXpath ......................................................................................................................................................... 19 

5. Selenium Webdriver — Identify Multiple Elements ................................................................................ 25 

By id ............................................................................................................................................................... 25 

By Class name ................................................................................................................................................ 25 

By Tagname ................................................................................................................................................... 26 

By Partial Link Text ........................................................................................................................................ 28 

By Link Text .................................................................................................................................................... 29 

By Name ........................................................................................................................................................ 31 

By CSS Selector .............................................................................................................................................. 32 

By Xpath ........................................................................................................................................................ 35 



Selenium Webdriver        

   iii 

 

6. Selenium Webdriver — Explicit and Implicit Wait ................................................................................... 41 

Explicit Wait ................................................................................................................................................... 41 

Implicit Wait .................................................................................................................................................. 43 

7. Selenium Webdriver — Pop-ups ............................................................................................................. 45 

8. Selenium Webdriver — Backward and Forward Navigation .................................................................... 47 

9. Selenium Webdriver — Cookies .............................................................................................................. 49 

10. Selenium Webdriver — Exceptions ......................................................................................................... 51 

11. Selenium Webdriver — Action Class ....................................................................................................... 54 

12. Selenium Webdriver — Create a Basic Test ............................................................................................. 57 

13. Selenium Webdriver — Forms ................................................................................................................ 59 

14. Selenium Webdriver — Drag and Drop ................................................................................................... 61 

15. Selenium Webdriver — Windows ........................................................................................................... 66 

16. Selenium Webdriver — Alerts ................................................................................................................. 68 

17. Selenium Webdriver — Handling Links ................................................................................................... 70 

18. Selenium Webdriver — Handling Edit Boxes ........................................................................................... 73 

19. Selenium Webdriver — Color Support .................................................................................................... 75 

20. Selenium Webdriver — Generating HTML Test Reports in Python .......................................................... 76 

21. Selenium Webdriver — Read/Write data from Excel .............................................................................. 79 

22. Selenium Webdriver — Handling Checkboxes ......................................................................................... 82 

23. Selenium Webdriver — Executing Tests in Multiple Browsers ................................................................ 85 

24. Selenium Webdriver — Headless Execution ............................................................................................ 89 

25. Selenium Webdriver — Wait Support ..................................................................................................... 91 

26. Selenium Webdriver — Select Support ................................................................................................... 93 

27. Selenium Webdriver — JavaScript Executor ............................................................................................ 96 

execute_script ............................................................................................................................................... 97 

28. Selenium Webdriver — Chrome WebDriver Options .............................................................................. 99 

29. Selenium Webdriver — Scroll Operations ............................................................................................. 101 

30. Selenium Webdriver — Capture Screenshots ........................................................................................ 103 



Selenium Webdriver        

   iv 

 

31. Selenium Webdriver — Right Click ........................................................................................................ 104 

32. Selenium Webdriver — Double Click ..................................................................................................... 106 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Selenium Webdriver        

   1 

 

Selenium Webdriver is a robust tool for testing the front end of an application and to 

perform tasks on the browser. Selenium tests can be created in multiple programming 

languages like Python, Java, C#, JavaScript, and so on. 

Selenium with Python combination is comparatively easy to understand and it is short in 

verbose. The APIs available in Python enable us to create a connection with the browser 

using Selenium.  

Selenium provides various Python commands which can be used for creating tests for 

different browsers like Chrome, Firefox, IE, and so on. It can be used in various 

platforms like Windows, Mac, Linux, and so on. 

Reasons to learn Selenium with Python 

 Python is easier to learn and compact in terms of programming. 

 While creating tests in Selenium with Java, we have to take care of the beginning 

and ending braces. In Python, simply code indentation needs to be taken care of. 

 Tests developed in Selenium with Python run faster than those written in Java. 

Reasons to learn Selenium Webdriver 

The reasons to learn Selenium Webdriver are mentioned below: 

 It is open source and comes without any licensing cost.  

 It can perform mouse and keyboard actions like drag and drop, keypress, click 

and hold, and so on.  

 It has a very friendly API. 

 It can be integrated with frameworks like TestNG and JUnit, build tools like 

Maven, continuous integration tools like Jenkins. 

 It has a huge community support. 

 It can execute test cases in headless mode.  

 

1. Selenium Webdriver – Introduction 



Selenium Webdriver        

   2 

 

The installation and setup of Selenium webdriver in Python can be done with the steps 

listed below: 

Step 1: Navigate to the site having the below link: 

https://www.python.org/downloads/ 

Step 2: Click on the Download Python <version number> button.  

 

Step 3: The executable file for Python should get downloaded in our system. On clicking 

it, the Python installation page should get launched. 

2. Selenium Webdriver — Installation 

https://www.python.org/downloads/


Selenium Webdriver        

   3 

 

 

Step 4: Python should be downloaded in the following path: 

C:\Users\<User>\AppData\Local\Programs\Python\Python<version> 

Step 5: For the Windows users, we have to configure the path of the Python and the 

Scripts folder (created inside the Python folder) in the Environment variables. 

 

Step 6: To check if Python has successfully installed, execute the command: python --

version. The Python version should get displayed. 

Step 7: For the Selenium bindings installation, run the command mentioned below:  



Selenium Webdriver        

   4 

 

pip install selenium.  

Step 8: A new folder called the Selenium should now be generated within the Python 

folder. To upgrade to the latest Selenium version, run the command given below:  

pip install --U selenium. 

Step 9: To verify if Selenium has been installed properly, execute the command 

mentioned below:  

pip show Selenium. 

Step 10: Next, we have to download the Python editor called PyCharm from the below 

link: 

https://www.jetbrains.com/pycharm/ 

Step 11: Click on Download. 

 

Step 12: For Selenium webdriver in Python, click on the Download button which is 

below the Community version (free for use). 

https://www.jetbrains.com/pycharm/


Selenium Webdriver        

   5 

 

 

Step 13: After installation of PyCharm, we have to create a new project from File -> 

New Project -> Give a project name, say pythonProjectTest. Then, click on Create.  

Step 14: We have to create a Python package by right-clicking on the new project we 

created in Step13, click on New then select Python Package. Give a package name, say 

SeleniumTest and proceed.  

 

Step 15: We have to create a Python file by right-clicking on the new package we 

created in Step 14, click on New then select Python File. Give a package name, say 

test1.py and proceed.  

 

Step 16: To view the Selenium packages in our project, click on External Libraries and 

then expand the site-packages folder.  



Selenium Webdriver        

   6 

 

 



Selenium Webdriver        

   7 

 

We can open a browser and navigate to an application with the help of Selenium 

webdriver in Python. This is done with the help of the get method. While automating a 

test, the very first step that we create is launching an application with a URL. 

The syntax of Selenium Webdriver is as follows: 

driver.get("<url>") 

driver.get("https://www.tutorialspoint.com/index.htm") 

For a get method, the webdriver waits till the page is completely loaded before moving 

to the next step. If we try to launch a web page having numerous AJAX calls, then the 

webdriver is unaware when the page is completely loaded.  

To fix this issue, we have to apply waits in our code.  

Code Implementation 

The code implementation for selenium webdriver is as follows: 

from selenium import webdriver 

#set chromedriver.exe path 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/questions/index.php") 

#get page title 

print('Page title: ' + driver.title) 

#quit browser 

driver.quit() 

Output 

The output is given below: 

 

The output shows the message - Process with exit code 0. This means that the above 

Python code executed successfully. Also, the page title of the application (obtained from 

the driver.title method) - The Best Technical Questions and Answers get printed in the 

console.  

3. Selenium Webdriver — Browser Navigation 



Selenium Webdriver        

   8 

 

Once we navigate to a webpage, we have to interact with the web elements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

By Id 

For this, our first job is to identify the element. We can use the id attribute for an 

element for its identification and utilize the method find_element_by_id. With this, the 

first element with the matching value of the attribute id is returned. 

In case there is no element with the matching value of the id attribute, 

NoSuchElementException shall be thrown. 

The syntax for identifying an element is as follows: 

driver.find_element_by_id("value of id attribute") 

Let us see the html code of a web element: 

 

The edit box highlighted in the above image has an id attribute with value gsc-i-id1. Let 

us try to input some text into this edit box after identifying it. 

Code Implementation 

The code implementation of identifying a web element is as follows: 

from selenium import webdriver 

#set chromedriver.exe path 

4. Selenium Webdriver — Identify Single Element  



Selenium Webdriver        

   9 

 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify edit box with id 

l = driver.find_element_by_id('gsc-i-id1') 

#input text 

l.send_keys('Selenium') 

#obtain value entered 

v = l.get_attribute('value') 

print('Value entered: ' + v) 

#driver quit 

driver.quit() 

Output 

The output is given below: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Selenium gets printed in the console.  

By Name 

Once we navigate to a webpage, we have to interact with the web elements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the element. We can use the name attribute for an 

element for its identification and utilize the method find_element_by_name. With this, 

the first element with the matching value of the attribute name is returned. 

In case there is no element with the matching value of the name attribute, 

NoSuchElementException shall be thrown. 

The syntax for identifying single element by name is as follows: 

driver.find_element_by_name("value of name attribute") 

Let us see the html code of a web element as given below: 



Selenium Webdriver        

   10 

 

 

The edit box highlighted in the above image has a name attribute with value search. Let 

us try to input some text into this edit box after identifying it. 

Code Implementation 

The code implementation of identifying single element by name is as follows: 

from selenium import webdriver 

#set chromedriver.exe path 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify edit box with name 

l = driver.find_element_by_name('search') 

#input text 

l.send_keys('Selenium Java') 

#obtain value entered 

v = l.get_attribute('value') 

print('Value entered: ' + v) 

#driver close 

driver.close() 

Output 

The output is as follows: 



Selenium Webdriver        

   11 

 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Selenium Java gets printed in the console. 

By ClassName 

Once we navigate to a webpage, we have to interact with the web elements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the element. We can use the class attribute for an 

element for its identification and utilise the method find_element_by_class_name. With 

this, the first element with the matching value of the attribute class is returned. 

In case there is no element with the matching value of the class attribute, 

NoSuchElementException shall be thrown. 

The syntax for identifying single element by Classname is as follows : 

driver.find_element_by_class_name("value of class attribute") 

Let us see the html code of a web element as given below: 

 

The web element highlighted in the above image has a class attribute with value 

heading. Let us try to obtain the text of that element after identifying it. 

Code Implementation 

The code implementation of identifying single element by Classname is as follows: 



Selenium Webdriver        

   12 

 

from selenium import webdriver 

#set chromedriver.exe path 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify edit box with class 

l = driver.find_element_by_class_name('heading') 

#identify text 

v = l.text 

#text obtained 

print('Text is: ' + v) 

#driver close 

driver.close() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the text of the webelement (obtained from the 

text method) - About Tutorialspoint gets printed in the console. 

By TagName 

Once we navigate to a webpage, we have to interact with the webelements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the element. We can use the tagname for an element 

for its identification and utilise the method find_element_by_tag_name. With this, the 

first element with the matching tagname is returned. 

In case there is no element with the matching tagname, NoSuchElementException shall 

be thrown. 

The syntax for identifying single element by Tagname is as follows: 

driver.find_element_by_tag_name("tagname of element") 

Let us see the html code of a web element as given below: 



Selenium Webdriver        

   13 

 

 

The edit box highlighted in the above image has a tagname - input. Let us try to input 

some text into this edit box after identifying it. 

Code Implementation 

The code implementation of identifying single element by Tagname is as follows: 

from selenium import webdriver 

#set chromedriver.exe path 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify edit box with tagname 

l = driver.find_element_by_tag_name('input') 

#input text 

l.send_keys('Selenium Python') 

#obtain value entered 

v = l.get_attribute('value') 

print('Value entered: ' + v) 

#driver close 

driver.close() 

Output 

The output is as follows 



Selenium Webdriver        

   14 

 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Selenium Python gets printed in the console. 

By Link Text 
Once we navigate to a webpage, we may interact with a webelement by clicking a link to 

complete our automation test case. The link text is used for an element having the 

anchor tag. 

For this, our first job is to identify the element. We can use the link text attribute for an 

element for its identification and utilize the method find_element_by_link_text. With 

this, the first element with the matching value of the given link text is returned. 

In case there is no element with the matching value of the link text, 

NoSuchElementException shall be thrown. 

The syntax for identifying single element by Link Text is as follows: 

driver.find_element_by_link_text("value of link text") 

Let us see the html code of a web element as given below: 

 

The link highlighted in the above image has a tagname - a and the link text - Privacy 

Policy. Let us try to click on this link after identifying it. 

 

Code Implementation 

The code implementation of identifying single element by Link Text is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 



Selenium Webdriver        

   15 

 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify link with link text 

l = driver.find_element_by_link_text('Privacy Policy') 

#perform click 

l.click() 

print('Page navigated after click: ' + driver.title) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application (obtained from 

the driver.title method) - About Privacy Policy at Tutorials Point - Tutorialspoint gets 

printed in the console. 

By Partial Link Text 

Once we navigate to a webpage, we may interact with a web element by clicking a link 

to complete our automation test case. The partial link text is used for an element having 

the anchor tag. 

For this, our first job is to identify the element. We can use the partial link text attribute 

for an element for its identification and utilize the method 

find_element_by_partial_link_text. With this, the first element with the matching value 

of the given partial link text is returned. 

In case there is no element with the matching value of the partial link text, 

NoSuchElementException shall be thrown. 

The syntax for identifying single element by Partial Link Text is as follows: 

driver.find_element_by_partial_link_text("value of partial ink text") 

Let us see the html code of a web element as given below: 



Selenium Webdriver        

   16 

 

 

The link highlighted in the above image has a tagname - a and the partial link text - 

Refund. Let us try to click on this link after identifying it. 

 

Code Implementation 

The code implementation for identifying single element by Partial Link Text is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify link with partial link text 

l = driver.find_element_by_partial_link_text('Refund') 

#perform click 

l.click() 

print('Page navigated after click: ' + driver.title) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application (obtained from 

the driver.title method) - Return, Refund & Cancellation Policy - Tutorialspoint gets 

printed in the console. 



Selenium Webdriver        

   17 

 

By CSS Selector 

Once we navigate to a webpage, we have to interact with the webelements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the element. We can create a css selector for an 

element for its identification and use the method find_element_by_css_selector. With 

this, the first element with the matching value of the given css is returned. 

In case there is no element with the matching value of the css, NoSuchElementException 

shall be thrown. 

The syntax for identifying single element by CSS Selector is as follows: 

driver.find_element_by_css_selector("value of css") 

Rules to create CSS Expression 

The rules to create a css expression are discussed below: 

 To identify the element with css, the expression should be 

tagname[attribute='value']. We can also specifically use the id attribute to create 

a css expression. 

 With id, the format of a css expression should be tagname#id. For example, 

input#txt [here input is the tagname and the txt is the value of the id attribute]. 

 With class, the format of css expression should be tagname.class. For example, 

input.cls-txt [here input is the tagname and the cls-txt is the value of the class 

attribute]. 

 If there are n children of a parent element, and we want to identify the nth child, 

the css expression should have nth-of –type(n). 

 



Selenium Webdriver        

   18 

 

In the above code, if we want to identify the fourth li childof ul[Questions and Answers], 

the css expression should be ul.reading li:nth-of-type(4). Similarly, to identify the last 

child, the css expression should be ul.reading li:last-child. 

For attributes whose values are dynamically changing, we can use ^= to locate an 

element whose attribute value starts with a particular text. For example, 

input[name^='qa'] Here, input is the tagname and the value of the name attribute starts 

with qa. 

For attributes whose values are dynamically changing, we can use $= to locate an 

element whose attribute value ends with a particular text. For example, 

input[class$='txt'] Here, input is the tagname and the value of the class attribute ends 

with txt. 

For attributes whose values are dynamically changing, we can use *= to locate an 

element whose attribute value contains a specific sub-text. For example, 

input[name*='nam'] Here, input is the tagname and the value of the name attribute 

contains the sub-text nam. 

Let us see the html code of a web element as given below: 

 

The edit box highlighted in the above image has a name attribute with value search, the 

css expression should be input[name='search']. Let us try to input some text into this 

edit box after identifying it. 

Code Implementation 

The code implementation of identifying single element by CSS Selector is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify element with css 

l = driver.find_element_by_css_selector("input[name='search']") 

l.send_keys('Selenium Python') 

v = l.get_attribute('value') 

print('Value entered is: ' + v) 



Selenium Webdriver        

   19 

 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Selenium Python gets printed in the console. 

ByXpath 
Once we navigate to a webpage, we have to interact with the webelements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the element. We can create an xpath for an element 

for its identification and use the method find_element_by_xpath. With this, the first 

element with the matching value of the given xpath is returned. 

In case there is no element with the matching value of the xpath, 

NoSuchElementException shall be thrown. 

The syntax for identifying single element by Xpath is as follows: 

driver.find_element_by_xpath("value of xpath") 

Rules to create Xpath Expression 

The rules to create a xpath expression are discussed below: 

 To identify the element with xpath, the expression should be 

//tagname[@attribute='value']. There can be two types of xpath – relative and 

absolute. The absolute xpath begins with / symbol and starts from the root node 

upto the element that we want to identify. 

For example, 

        /html/body/div[1]/div/div[1]/a 

 The relative xpath begins with // symbol and does not start from the root node.  

For example, 



Selenium Webdriver        

   20 

 

        //img[@alt='tutorialspoint'] 

Let us see the html code of the highlighted link - Home starting from the root. 

 

The absolute xpath for this element can be as follows:  

/html/body/div[1]/div/div[1]/a.  

 

The relative xpath for element Home can be as follows: 

//a[@title='TutorialsPoint - Home'].  



Selenium Webdriver        

   21 

 

 

Functions 

There are also functions available which help to frame relative xpath expressions. 

text()  

It is used to identify an element with its visible text on the page. The xpath expression is 

as follows: 

//*[text()='Home']. 

 
starts-with   

It is used to identify an element whose attribute value begins with a specific text. This 

function is normally used for attributes whose value changes on each page load. 

Let us see the html of the link Q/A: 



Selenium Webdriver        

   22 

 

 
The xpath expression should be as follows: 

//a[starts-with(@title, 'Questions &')]. 

 
 

contains()  
It identifies an element whose attribute value contains a sub-text. This function is 

normally used for attributes whose value changes on each page load. 

The xpath expression is as follows: 

//a[contains(@title, 'Questions & Answers')]. 



Selenium Webdriver        

   23 

 

 
Let us see the html code of a webelement as shown below: 

 

The edit box highlighted in the above image has a name attribute with value search, the 

xpath expression should be //input[@name='search']. Let us try to input some text into 

this edit box after identifying it. 

Code Implementation 

The code implementation of identifying single element by XPath is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify element with xpath 

l = driver.find_element_by_xpath("//input[@name='search']") 

l.send_keys('Selenium Python') 

v = l.get_attribute('value') 

print('Value entered is: ' + v) 

#driver quit 

driver.quit() 

Output 

The output is as follows 



Selenium Webdriver        

   24 

 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Selenium Python gets printed in the console. 



Selenium Webdriver        

   25 

 

In this chapter, we will learn how to identify multiple elements by various options. Let us 

begin by understanding identifying multiple elements by Id. 

By id 

It is not recommended to identify multiple elements by the locator id, since the value of 

an id attribute is unique to an element and is applicable to a single element on the page. 

By Class name 

Once we navigate to a webpage, we have to interact with the webelements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the elements. We can use the class attribute for 

elements for their identification and utilise the method find_elements_by_class_name. 

With this, all the elements with the matching value of the attribute class are returned in 

the form of list. 

In case there are no elements with the matching value of the class attribute, an empty 

list shall be returned. 

The syntax for identifying multiple elements by Classname is as follows: 

driver.find_elements_by_class_name("value of class attribute") 

Let us see the html code of webelements having class attribute as given below: 

 

The value of the class attribute highlighted in the above image  is toc chapters. Let us 

try to count the number of such webelements. 

Code Implementation 

The code implementation for identifying multiple elements by Classname is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

5. Selenium Webdriver — Identify Multiple 
Elements 



Selenium Webdriver        

   26 

 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify elements with class attribute 

l = driver.find_elements_by_class_name("chapters") 

#count elements 

s = len(l) 

print('Count is:') 

print(s) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the total count of webelements having the class 

attributes value chapters (obtained from the len method) - 2 gets printed in the console. 

By Tagname 
Once we navigate to a webpage, we have to interact with the webelements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the elements. We can use the tagname for elements 

for their identification and utilise the method find_elements_by_tag_name. With this, all 

the elements with the matching value of the tagname are returned in the form of list. 

In case there are no elements with the matching value of the tagname, an empty list 

shall be returned. 

The syntax for identifying multiple elements by Tagname is as follows: 

driver.find_elements_by_tag_name("value of tagname") 

Let us see the html code of a webelement, which is as follows: 



Selenium Webdriver        

   27 

 

 

The value of the tagname highlighted in the above image is h4. Let us try to count the 

number of webelements having tagname as h4. 

Code Implementation 

The code implementation for identifying multiple elements by Tagname is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify elements with tagname 

l = driver.find_elements_by_tag_name("h4") 

#count elements 

s = len(l) 

print('Count is:') 

print(s) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the total count of webelement having the 

tagname as h4 (obtained from the len method) - 1 gets printed in the console. 



Selenium Webdriver        

   28 

 

By Partial Link Text 

Once we navigate to a webpage, we may have to interact with the webelements by 

clicking a link to complete our automation test case. The partial link text is used for 

elements having the anchor tag. 

For this, our first job is to identify the elements. We can use the partial link text attribute 

for elements for their identification and utlize the method 

find_elements_by_partial_link_text. With this, all the elements with the matching value 

of the given partial link text are returned in the form of a list. 

In case there are no elements with the matching value of the partial link text, an empty 

list shall be returned. 

The syntax for identifying multiple elements by Partial Link Text is as follows: 

driver.find_elements_by_partial_link_text("value of partial link text") 

Let us see the html code of link, which is as follows: 

 

The link highlighted - Terms of Use in the above image has a tagname - a and the partial 

link text - Terms. Let us try to identify the text after identifying it. 

Code Implementation 

The code implementation for identifying multiple elements by Partial Link Text is as 

follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify elements with partial link text 

l = driver.find_elements_by_partial_link_text('Terms') 

#count elements 

s = len(l) 

#iterate through list 

for i in l: 



Selenium Webdriver        

   29 

 

#obtain text 

   t = i.text 

print('Text is: ' + t) 

#driver quit 

driver.quit() 

Output 

The output is given below: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the text of the link identified with the partial 

link text locator (obtained from the text method) - Terms of use gets printed in the 

console. 

By Link Text 

Once we navigate to a webpage, we may have to interact with the webelements by 

clicking a link to complete our automation test case. The link text is used for elements 

having the anchor tag. 

For this, our first job is to identify the elements. We can use the link text attribute for 

elements for their identification and utilize the method find_elements_by_link_text. With 

this, all the elements with the matching value of the given link text are returned in the 

form of a list. 

In case there are no elements with the matching value of the link text, an empty list 

shall be returned. 

The syntax for identifying multiple elements by Link Text is as follows: 

driver.find_elements_by_link_text("value of link text") 

Let us see the html code of link, which is as follows: 



Selenium Webdriver        

   30 

 

 

The link highlighted - Cookies Policy in the above image has a tagname - a and the link 

text - Cookies Policy. Let us try to identify the text after identifying it. 

Code Implementation 

The code implementation for identifying multiple elements by Link Text is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify elements with link text 

l = driver.find_elements_by_link_text('Cookies Policy') 

#count elements 

s = len(l) 

#iterate through list 

for i in l: 

#obtain text 

   t = i.text 

print('Text is: ' + t) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 



Selenium Webdriver        

   31 

 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the text of the link identified with the link text 

locator (obtained from the text method) - Cookies Policy gets printed in the console. 

By Name 
Once we navigate to a webpage, we have to interact with the webelements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the elements. We can use the name attribute of 

elements for their identification and utilize the method find_elements_by_name. With 

this, the elements with the matching value of the attribute name are returned in the 

form of a list. 

In case there is no element with the matching value of the name attribute, an empty list 

shall be returned. 

The syntax for identifying multiple elements by Name is as follows: 

driver.find_elements_by_name("value of name attribute") 

Let us see the html code of an webelement, which is as follows: 

 

The edit box highlighted in the above image has a name attribute with value search. Let 

us try to input some text into this edit box after identifying it. 



Selenium Webdriver        

   32 

 

Code Implementation 

The code implementation for identifying multiple elements by Name is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify elements with name attribute 

l = driver.find_elements_by_name('search') 

#count elements 

s = len(l) 

#iterate through list 

for i in l: 

#obtain text 

   t = i.send_keys('Selenium Python') 

   v = i.get_attribute('value') 

print('Value entered is: ' + v) 

#driver quit 

driver.quit() 

Output 

The output is as follows 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Selenium Python gets printed in the console. 

By CSS Selector 
Once we navigate to a webpage, we have to interact with the webelements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  



Selenium Webdriver        

   33 

 

For this, our first job is to identify the elements. We can create a css selector for their 

identification and utilize the method find_elements_by_css_selector. With this, the 

elements with the matching value of the given css are returned in the form of list. 

In case there is no element with the matching value of the css, an empty list shall be 

returned. 

The syntax for identifying multiple elements by CSS Selector is as follows: 

driver.find_elements_by_css_selector("value of css") 

Rules for CSS Expression 

The rules to create a css expression are discussed below: 

 To identify the element with css, the expression should be 

tagname[attribute='value']. We can also specifically use the id attribute to create 

a css expression. 

 With id, the format of a css expression should be tagname#id. For example, 

input#txt [here input is the tagname and the txt is the value of the id attribute]. 

 With class, the format of css expression should be tagname.class . For example, 

input.cls-txt [here input is the tagname and the cls-txt is the value of the class 

attribute]. 

 If there are n children of a parent element, and we want to identify the nth child, 

the css expression should have nth-of –type(n). 

 

In the above code, if we want to identify the fourth li child of ul[Questions and Answers], 

the css expression should be ul.reading li:nth-of-type(4). Similarly, to identify the last 

child, the css expression should be ul.reading li:last-child. 



Selenium Webdriver        

   34 

 

For attributes whose values are dynamically changing, we can use ^= to locate an 

element whose attribute value starts with a particular text. For example, 

input[name^='qa'] [here input is the tagname and the value of the name attribute starts 

with qa]. 

For attributes whose values are dynamically changing, we can use $= to locate an 

element whose attribute value ends with a particular text. For example, 

input[class$='txt'] Here, input is the tagname and the value of the class attribute ends 

with txt. 

For attributes whose values are dynamically changing, we can use *= to locate an 

element whose attribute value contains a specific sub-text. For example, 

input[name*='nam'] Here, input is the tagname and the value of the name attribute 

contains the sub-text nam. 

Let us see the html code of a webelement: 

 

The edit box highlighted in the above image has a name attribute with value search, the 

css expression should be input[name='search']. Let us try to input some text into this 

edit box after identifying it. 

Code Implementation 

The code implementation for identifying multiple elements by CSS Selector is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify elements with css 

l = driver.find_elements_by_css_selector("input[name='search']") 

#count elements 

s = len(l) 

#iterate through list 

for i in l: 

#obtain text 

  t = i.send_keys('Tutorialspoint') 



Selenium Webdriver        

   35 

 

  v = i.get_attribute('value') 

print('Value entered is: ' + v) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Tutorialspoint gets printed in the console. 

By Xpath 

Once we navigate to a webpage, we have to interact with the webelements available on 

the page like clicking a link/button, entering text within an edit box, and so on to 

complete our automation test case.  

For this, our first job is to identify the elements. We can create an xpath for their 

identification and utilize the method find_elements_by_xpath. With this, the elements 

with the matching value of the given xpath are returned in the form of a list. 

In case there is no element with the matching value of the xpath, an empty list shall be 

returned. 

The syntax for identifying multiple elements by Xpath is as follows: 

driver.find_elements_by_xpath("value of xpath") 

Rules for Xpath Expression 

The rules to create a xpath expression are discussed below: 

 To identify the element with xpath, the expression should be 

//tagname[@attribute='value']. There can be two types of xpath – relative and 

absolute. The absolute xpath begins with / symbol and starts from the root node 

upto the element that we want to identify. 

For example, 

        /html/body/div[1]/div/div[1]/a 

 The relative xpath begins with // symbol and does not start from the root node.  



Selenium Webdriver        

   36 

 

For example, 

        //img[@alt='tutorialspoint'] 

Let us see the html code of the highlighted link - Home starting from the root. 

The absolute xpath for the element Home can be as follows: 

/html/body/div[1]/div/div[1]/a.  

 

The relative xpath for element Home can be as follows: 

//a[@title='TutorialsPoint - Home'].  



Selenium Webdriver        

   37 

 

 

Functions 

There are also functions available which help to frame relative xpath expressions:- 

text() 

It is used to identify an element with the help of the visible text on the page. The xpath 

expression is as follows: 

//*[text()='Home']. 

 
starts-with 

It is used to identify an element whose attribute value begins with a specific text. This 

function is normally used for attributes whose value changes on each page load. 

Let us see the html of the element Q/A: 



Selenium Webdriver        

   38 

 

 
The xpath expression should be as follows: 

//a[starts-with(@title, 'Questions &')]. 

 
 

contains() 

It identifies an element whose attribute value contains a sub-text. This function is 

normally used for attributes whose value changes on each page load. 

The xpath expression is as follows:   

//a[contains(@title, 'Questions & Answers')]. 



Selenium Webdriver        

   39 

 

 
Let us see the html code of a webelement: 

 

The edit box highlighted in the above image has a name attribute with value search, the 

xpath expression should be //input[@name='search']. Let us try to input some text into 

this edit box after identifying it. 

Code Implementation 

The code implementation for identifying multiple elements by Xpath is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify elements with xpath 

l = driver.find_elements_by_xpath("//input[@name='search']") 

#count elements 

s = len(l) 

#iterate through list 

for i in l: 

#obtain text 

  t = i.send_keys('Tutorialspoint - Selenium') 

  v = i.get_attribute('value') 

print('Value entered is: ' + v) 

#driver quit 



Selenium Webdriver        

   40 

 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Tutorialspoint - Selenium gets printed in the console. 



Selenium Webdriver        

   41 

 

Let us understand what an explicit wait in the Selenium Webdriver is. 

Explicit Wait 

An explicit wait is applied to instruct the webdriver to wait for a specific condition before 

moving to the other steps in the automation script.  

Explicit wait is implemented using the WebDriverWait class along with 

expected_conditions. The expected_conditions class has a group of pre-built conditions 

to be used along with the WebDriverWait class. 

Pre-built Conditions 

The pre-built conditions which are to be used along with the WebDriverWait class are 

given below: 

 alert_is_present 

 element_selection_state_to_be 

 presence_of_all_elements_located 

 element_located_to_be_selected 

 text_to_be_present_in_element 

 text_to_be_present_in_element_value 

 frame_to_be_available_and_switch_to_it 

 element_located_to_be_selected 

 visibility_of_element_located 

 presence_of_element_located 

 title_is 

 title_contains 

 visibility_of 

 staleness_of 

 element_to_be_clickable 

 invisibility_of_element_located 

 element_to_be_selected 

Let us wait for the text - Team @ Tutorials Point which becomes available on clicking the 

link - Team on the page. 

6. Selenium Webdriver — Explicit and Implicit 
Wait 



Selenium Webdriver        

   42 

 

 

On clicking the Team link, the text Team @ Tutorials Point appears. 

 

Code Implementation 

The code implementation for the explicit wait is as follows: 

from selenium import webdriver 

from selenium.webdriver.common.by import By 

from selenium.webdriver.support import expected_conditions as EC 

from selenium.webdriver.support.wait import WebDriverWait 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify element 

l = driver.find_element_by_link_text('Team') 

l.click() 

#expected condition for explicit wait 

w = WebDriverWait(driver, 5) 

w.until(EC.presence_of_element_located((By.TAG_NAME, 'h1'))) 

s = driver.find_element_by_tag_name('h1') 

#obtain text 

t = s.text 



Selenium Webdriver        

   43 

 

print('Text is: ' + t) 

#driver quit 

driver.quit() 

Output 

The output is mentioned below: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the text (obtained from the text method) - 

Team @ Tutorials Point gets printed in the console. 

Implicit Wait 

An implicit wait is applied to instruct the webdriver for polling the DOM (Document 

Object Model) for a specific amount of time while making an attempt to identify an 

element which is currently unavailable. 

The default value of the implicit wait time is 0. Once a wait time is set, it remains 

applicable through the entire life of the webdriver object. If an implicit wait is not set and 

an element is still not present in DOM, an exception is thrown. 

The syntax for the implicit wait is as follows: 

driver.implicitly_wait(5) 

Here, a wait time of five seconds is applied to the webdriver object. 

Code Implementation 

The code implementation for the implicit wait is as follows: 

from selenium import webdriver 

#set path of chromedriver.exe 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait of 0.5s 

driver.implicitly_wait(0.5) 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify link with link text 



Selenium Webdriver        

   44 

 

l = driver.find_element_by_link_text('FAQ') 

#perform click 

l.click() 

print('Page navigated after click: ' + driver.title) 

#driver quit 

driver.quit() 

Output 

The output is mentioned below: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. On clicking on the FAQ link, the webdriver waits for 

0.5 seconds and then moves to the next step. Also, the title of the next page(obtained 

from the driver.title method) - Frequently Asked Questions - Tutorialspoint gets printed 

in the console. 



Selenium Webdriver        

   45 

 

A new pop-up window can open on clicking a link or a button. The webdriver by default 

has control over the main page, in order to access the elements on the new pop-up, the 

webdriver control has to be switched from the main page to the new pop-up window. 

Methods 

The methods to handle new pop-ups are listed below: 

 driver.current_window_handle: To obtain the handle id of the window in 

focus. 

 driver.window_handles:To obtain the list of all the opened window handle ids. 

 driver.swtich_to.window(<window handle id>):To switch the webdriver 

control to an opened window whose handle id is passed as a parameter to the 

method. 

 

On clicking the Sign in with Apple button, a new pop-up opens having the browser title 

as Sign in with Apple ID Let us try to switch to the new pop-up and access elements 

there. 

Code Implementation 

The code implementation for the pop-ups is as follows: 

7. Selenium Webdriver — Pop-ups 



Selenium Webdriver        

   46 

 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://the-internet.herokuapp.com/windows") 

#identify element 

s = driver.find_element_by_link_text("Click Here") 

s.click() 

#current main window handle 

m= driver.current_window_handle 

#iterate over all window handles 

for h in driver.window_handles: 

#check for main window handle 

   if h != m: 

       n = h 

#switch to new tab 

driver.switch_to.window(n) 

print('Page title of new tab: ' + driver.title) 

#switch to main window 

driver.switch_to.window(m) 

print('Page title of main window: ' + driver.title) 

#quit browser 

driver.quit() 

Output 

The output is as follows 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. First the page title of the new pop-up(obtained from 

the method title) - Sign in with Apple ID gets printed in the console. Next, after 

switching the webdriver control to the main window, its page title - Sign In | Indeed 

Accounts get printed in the console. 



Selenium Webdriver        

   47 

 

We can move backward and forward in browser history with the help of the Selenium 

webdriver with Python. To navigate a step forward in history the method forward is 

used. To navigate a step backward in history the method back is used.  

The syntax for backward and forward navigation is as follows: 

driver.forward() 

driver.back() 

Code Implementation 

The code implementation for backward and forward navigation is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(0.8) 

#url 1 launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#url 2 launch 

driver.get("https://www.tutorialspoint.com/online_dev_tools.htm") 

#back in history 

driver.back() 

print('Page navigated after back: ' + driver.title) 

#forward in history 

driver.forward() 

print('Page navigated after forward: ' + driver.title) 

#driver quit 

driver.quit() 

Output 

The output is as follows 

 

8. Selenium Webdriver — Backward and 
Forward Navigation 



Selenium Webdriver        

   48 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. After launching the two URLs, the webdriver 

navigates back in the browser history and the title of the previous page(obtained from 

the driver.title method) - About Careers at Tutorialspoint - Tutorialspoint gets printed in 

the console. 

Again, the webdriver navigates forward in the browser history and the title of the 

following page(obtained from the driver.title method) - Online Development and Testing 

Tools gets printed in the console. 



Selenium Webdriver        

   49 

 

Selenium webdriver can handle cookies. We can add a cookie, obtain a cookie with a 

particular name, and delete a cookie with the help of various methods in Selenium. 

Methods 

The methods to handle cookies are listed below: 

 add_cookie: Used to add a cookie to the present session. 

 get_cookie: Used to get a cookie with a particular name. It yields none, if there 

is no cookie available with the given name. 

 get_cookies: Used to get all the cookies for the present URL. 

 delete_cookie: Used to delete a cookie with a particular name. 

 delete_all_cookies: Used to delete all the cookies for the present URL. 

Code Implementation 

The code implementation for handling cookies is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#add a cookie 

c = {'name': 'c1', 'value': 'val1'} 

driver.add_cookie(c) 

#get a cookie 

l = driver.get_cookie('c1') 

print('Cookie is: ') 

print(l) 

#get all cookies 

m = driver.get_cookies() 

print('Cookies are: ') 

print(m) 

#delete a cookie 

driver.delete_cookie('c1') 

#check cookie after deletion 

9. Selenium Webdriver — Cookies 



Selenium Webdriver        

   50 

 

l = driver.get_cookie('c1') 

print('Cookie is: ') 

print(l) 

#close driver 

driver.close() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. First, the details of the cookie which is added to the 

current session get printed in the console.  

Next, the details of all the cookies which are present to the current session get printed in 

the console. After the deletion of the cookie c1, we have tried to obtain the details of the 

cookie c1. Since it is deleted, None is returned by the get_cookie method. 



Selenium Webdriver        

   51 

 

If an error occurs, any of the methods fail or an unexpected error happens, an exception 

is thrown. In Python, all the exceptions are obtained from the BaseException class. 

Selenium Exceptions 

Some of the common Selenium Exceptions are listed below: 

 ElementNotInteractableException: It is thrown if a webelement is attached to 

the DOM, but on trying to access the same webelement a different webelement 

gets accessed. 

 ElementClickInterceptedException: It is thrown if a click operation on a 

webelement could not happen because another webelement covering that 

webelement receives the click. 

 ElementNotVisibleException: It is thrown if a webelement is attached to the 

DOM, but invisible on the page and inaccessible. 

 ElementNotSelectableException: It is thrown if we make an attempt to select 

a webelement which is not selectable. 

 ImeActivationFailedException: It is thrown if we fail to activate an IME 

engine. 

 ErrorInResponseException: It is thrown if there is an issue on the server side. 

 InsecureCertificateException: It is thrown if a user gets a certificate warning 

while navigating an application. It is due to a TLS certificate which is no longer 

active and valid. 

 ImeNotAvailableException: It is thrown if there is no support for the IME 

engine. 

 InvalidCookieDomainException: It is thrown if we try to add a cookie under a 

varied domain than the present URL. 

 InvalidArgumentException: It is thrown if the argument passed to a command 

is no longer valid. 

 InvalidElementStateException: It is thrown if we try to access a webelement 

which is not in a valid state. 

 InvalidCoordinatesException: It is thrown if the coordinates for interactions 

are not valid. 

 InvalidSessionIdException: It is thrown if the session id is not available in the 

group of live sessions. Thus the given session is either non-existent or inactive. 

10. Selenium Webdriver — Exceptions 



Selenium Webdriver        

   52 

 

 InvalidSelectorException: It is thrown if the locator used to identify an 

element does not yield a webelement. 

 MoveTargetOutOfBoundsException: It is thrown if the target given in the 

ActionChains method is out of the scope of the document. 

 InvalidSwitchToTargetException: It is thrown if the frame id/name or the 

window handle id to be switched to is incorrect. 

 NoSuchAttributeException: It is thrown if an element attribute is not detected. 

 NoAlertPresentException: It is thrown if we try to switch to an alert which is 

non-existent. 

 NoSuchFrameException: It is thrown if we try to switch to a frame which is 

non-existent. 

 StaleElementReferenceException: It is thrown if an element reference is 

currently stale. 

 NoSuchWindowException: It is thrown if we try to switch to a window which is 

non-existent. 

 UnexpectedAlertPresentException: It is thrown if an alert appears 

unexpectedly in an automation flow. 

 UnableToSetCookieException: It is thrown if the webdriver is unsuccessful in 

setting a cookie. 

 UnexpectedTagNameException: It is thrown if a support class has not 

received an anticipated webelement. 

 NoSuchElementException: It is thrown if the selector used is unable to locate a 

webelement. 

Let us see an example of a code which throws an exception. 

Code Implementation 

The code implementation for the Selenium Exceptions is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify element with an incorrect link text value 

l = driver.find_element_by_link_text('Teams') 

l.click() 

#driver quit 



Selenium Webdriver        

   53 

 

driver.quit() 

Output 

The output is given below: 

 

The output shows the message - Process with exit code 1 meaning that the above 

Python code has encountered an error. Also, NoSuchElementException is thrown since 

the locator link text is not able to detect the link Teams on the page. 



Selenium Webdriver        

   54 

 

Selenium can perform mouse movements, key press, hovering on an element, drag and 

drop actions, and so on with the help of the ActionsChains class. We have to create an 

instance of the ActionChains class which shall hold all actions in a queue. 

Then the method - perform is invoked which actually performs the tasks in the order in 

which they are queued. We have to add the statement from selenium.webdriver import 

ActionChains to work with the ActionChains class.  

The syntax for ActionChains class is as follows: 

#Method 1 - chained pattern 

e =driver.find_element_by_css_selector(".txt") 

a = ActionChains(driver) 

a.move_to_element(e).click().perform() 

#Method 2 - queued actions one after another 

e =driver.find_element_by_css_selector(".txt") 

a = ActionChains(driver) 

a.move_to_element(e) 

a.click() 

a.perform() 

In both the above methods, the actions are performed in sequence in which they are 

called, one by one. 

Methods 

The methods of ActionChains class are listed below: 

 click: It is used to click a webelement. 

 click_and_hold: It is used to hold down the left mouse button on a webelement. 

 double_click: It is used to double click a webelement. 

 context_click: It is used to right click a webelement. 

 drag_and_drop_by_offset: It is used to first perform pressing the left mouse 

on the source element, navigating to the target offset and finally releasing the 

mouse. 

 drag_and_drop: It is used to first perform pressing the left mouse on the 

source element, navigating to the target element and finally releasing the mouse. 

 key_up: It is used to release a modifier key. 

 key_down: It is used for a keypress without releasing it. 

11. Selenium Webdriver — Action Class 



Selenium Webdriver        

   55 

 

 move_to_element: It is used to move the mouse to the middle of a 

webelement. 

 move_by_offset: It is used to move the mouse to an offset from the  present 

mouse position. 

 Perform: It is used to execute the queued actions. 

 move_to_element_by_offset: It is used to move the mouse by an offset of a 

particular webelement. The offsets are measured from the left-upper corner of 

the webelement. 

 Release: It is used to release a held mouse button on a webelement. 

 Pause: It is used to stop every input for a particular duration in seconds. 

 send_keys: It is used to send keys to the present active element. 

 reset_actions: It is used to delete all actions that are held locally and in remote. 

Let us click on the link - Privacy Policy using the ActionChains methods: 

 

Code Implementation 

The code implementation for ActionChains class is as follows: 

from selenium import webdriver 

from selenium.webdriver import ActionChains 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 



Selenium Webdriver        

   56 

 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify element 

s = driver.find_element_by_link_text("Privacy Policy") 

#instance of ActionChains 

a= ActionChains(driver) 

#move to element 

a.move_to_element(s) 

#click 

a.click().perform() 

#get page title 

print('Page title: ' + driver.title) 

#driver quit 

driver.close() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application(obtained from 

the driver.title method) - About Privacy Policy at Tutorials Point - Tutorialspoint gets 

printed in the console. 



Selenium Webdriver        

   57 

 

To create a basic test in Selenium with Python, the below steps need to be executed: 

Step 1: Identify the browser in which the test has to be executed. As we type webdriver 

in the editor, all the available browsers like Chrome, Firefox get displayed. Also, we have 

to pass the path of the chromedriver executable file path. 

The syntax to identify the browser is as follows: 

driver = webdriver.Chrome(executable_path='<path of chromedriver>') 

Step 2: Launch the application URL with the get method. 

The syntax for launching the application URL is as follows: 

     driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

Step 3: Identify webelement with the help of any of the locators like id, class, name, 

tagname, link text, partial link text, css or xpath on the page. 

The syntax to identify the webelement is as follows:         

l = driver.find_element_by_partial_link_text('Refund') 

Step 4: After the element has been located, perform an action on it like inputting a text, 

clicking, and so on. 

The syntax for performing an action is as follows:         

driver.find_element_by_partial_link_text('Refund').click() 

Step 5: Finish the test by quitting the webdriver session. For example,  

   driver.quit(); 

Let us see the html code of a webelement: 

12. Selenium Webdriver — Create a Basic Test 



Selenium Webdriver        

   58 

 

 

The link highlighted in the above image has a tagname - a and the partial link text - 

Refund. Let us try to click on this link after identifying it. 

Code Implementation 

The code implementation to create a basic test is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify link with partial link text 

l = driver.find_element_by_partial_link_text('Refund') 

#perform click 

l.click() 

print('Page navigated after click: ' + driver.title) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application (obtained from 

the driver.title method) - Return, Refund & Cancellation Policy - Tutorialspoint gets 

printed in the cons 



Selenium Webdriver        

   59 

 

Selenium webdriver can be used to submit a form. A form in a page is represented by 

the <form> tag. It contains sub-elements like the edit box, dropdown, link, and so on. 

Also, the form can be submitted with the help of the submit method. 

The syntax for forms is as follows: 

src = driver.find_element_by_css_selector("#draggable") 

src.submit() 

Let us see the html code of elements within the form tag. 

 

On submitting a form with the above html code, the below alert message is displayed. 

 

Code Implementation 

The code implementation for submitting a form is as follows: 

from selenium import webdriver 

from selenium.webdriver.common.alert import Alert 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

13. Selenium Webdriver — Forms 



Selenium Webdriver        

   60 

 

#url launch 

driver.get("https://www.tutorialspoint.com/selenium/selenium_automation_practic

e.htm") 

#identify element within form 

b = driver.find_element_by_name("firstname") 

b.send_keys('Tutorialspoint') 

e = driver.find_element_by_name("lastname") 

e.send_keys('Online Studies') 

#submit form 

e.submit() 

# instance of Alert class 

a = Alert(driver) 

# get alert text 

print(a.text) 

#accept alert 

a.accept() 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the Alert text - You are submitting information 

to an external page. 

Are you sure? 

The above message gets printed in the console. 



Selenium Webdriver        

   61 

 

Selenium can perform mouse movements, key press, hovering on an element, drag and 

drop actions, and so on with the help of the ActionsChains class. The method 

drag_and_drop first performs pressing the left mouse on the source element, navigating 

to the target element and finally releasing the mouse. 

The syntax for drag and drop is as follows: 

drag_and_drop(s, t) 

Here, s is the source element on which the left mouse button is pressed and t is the 

target element. We have to add the statement from selenium.webdriver import 

ActionChains to work with the ActionChains class.  

Let us perform the drag and drop functionality for the below elements: 

 

In the above image, the element with the name - Drag me to my target has to be 

dragged and dropped to the element - Dropped!. 

Code Implementation 

The code implementation for drag and drop is as follows: 

from selenium import webdriver 

 

from selenium.webdriver import ActionChains 

14. Selenium Webdriver — Drag and Drop 



Selenium Webdriver        

   62 

 

 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

 

#implicit wait time 

 

driver.implicitly_wait(5) 

 

driver.maximize_window() 

 

#url launch 

 

driver.get("https://jqueryui.com/droppable/") 

 

#switch to frame 

 

driver.switch_to.frame(0) 

 

#identify source element 

 

src = driver.find_element_by_css_selector("#draggable") 

 

#identify target element 

 

trgt = driver.find_element_by_css_selector("#droppable") 

 

#instance of ActionChains 

 

a= ActionChains(driver) 

 

#drag and drop then perform 

 

a.drag_and_drop(src, trgt) 

 

a.perform() 

Output 

The output is as follows: 

https://jqueryui.com/droppable/
https://jqueryui.com/droppable/


Selenium Webdriver        

   63 

 

 

After execution, the element with the name - Drag me to my target has been dragged 

and dropped to the element - Dropped!. 

The frames in an html code are represented by the frames/iframe tag. Selenium can 

handle frames by switching the webdriver access from the main page to the frame.  

Selenium Webdriver Frames 

Methods 

The methods to handle frames are listed below: 

 driver.switch_to_frame("framename"): framename is the name of the 

frame. 

 driver.switch_to_frame("framename.0.frame1"): Used to access the sub-

frame in a frame by separating the path with dot. Here, it would point to the 

frame with name frame1 which is the first sub-frame of the frame named 

framename. 

 driver.switch_to_default_content():Used to switch the webdriver access from 

a frame to the main page. 

Let us see the html code of an element inside a frame. 



Selenium Webdriver        

   64 

 

 

The tagname highlighted in the above image is frame and the value of the name 

attribute is frame_bottom.  

Code Implementation 

The code implementation to handle frames is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://the-internet.herokuapp.com/nested_frames") 

#switch to frame 

driver.switch_to.frame('frame-bottom') 

#identify source element 

s = driver.find_element_by_tag_name("body") 

#obtain text 

t = s.text 

print('Text is: ' + t) 

#quit browser 

driver.quit() 

Output 



Selenium Webdriver        

   65 

 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the text within the frame (obtained from the 

text method) - BOTTOM gets printed in the console. 



Selenium Webdriver        

   66 

 

A new pop-up window or a tab can open on clicking a link or a button. The webdriver by 

default has control over the main page, in order to access the elements on the new 

window, the webdriver control has to be switched from the main page to the new pop-up 

window or tab. 

Methods 

The methods to handle new windows are listed below: 

 driver.current_window_handle: To obtain the handle id of the window in 

focus. 

 driver.window_handles: To obtain the list of all the opened window handle ids. 

 driver.swtich_to.window(<window handle id>): To switch the webdriver 

control to an opened window whose handle id is passed as a parameter to the 

method. 

 

On clicking the Click Here link, a new tab opens having the browser title as New Window. 

Let us try to switch to the new tab and access elements in there. 

Code Implementation 

The code implementation for opening a new window is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://the-internet.herokuapp.com/windows") 

15. Selenium Webdriver — Windows 



Selenium Webdriver        

   67 

 

#identify element 

s = driver.find_element_by_link_text("Click Here") 

s.click() 

#current main window handle 

m= driver.current_window_handle 

#iterate over all window handles 

for h in driver.window_handles: 

#check for main window handle 

   if h != m: 

       n = h 

#switch to new tab 

driver.switch_to.window(n) 

print('Page title of new tab: ' + driver.title) 

#switch to main window 

driver.switch_to.window(m) 

print('Page title of main window: ' + driver.title) 

#quit browser 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. First the page title of the new tab(obtained from the 

method title) - New Window gets printed in the console. Next, after switching the 

webdriver control to the main window, its page title - The Internet gets printed in the 

console. 



Selenium Webdriver        

   68 

 

Selenium webdriver is capable of handling Alerts. The class 

selenium.webdriver.common.alert.Alert(driver) is used to work with Alerts. It has 

methods to accept, dismiss, enter and obtain the Alert text. 

Methods 

The methods under the Alert class are listed below: 

 accept(): For accepting an Alert. 

 dismiss(): For dismissing an Alert. 

 text():For obtaining Alert text. 

 send_keys(keysToSend):For entering text in Alert. 

Code Implementation 

The code implementation for alerts is as follows: 

from selenium import webdriver 

#import Alert class 

from selenium.webdriver.common.alert import Alert 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(0.8) 

#url launch 

driver.get("https://the-internet.herokuapp.com/javascript_alerts") 

#identify element 

l = driver.find_element_by_xpath("//*[text()='Click for JS Prompt']") 

l.click() 

# instance of Alert class 

a = Alert(driver) 

# get alert text 

print(a.text) 

#input text in Alert 

a.send_keys('Tutorialspoint') 

#dismiss alert 

a.dismiss() 

l.click() 

#accept alert 

16. Selenium Webdriver — Alerts 



Selenium Webdriver        

   69 

 

a.accept() 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the Alert text - I am a JS prompt gets printed 

in the console. 



Selenium Webdriver        

   70 

 

Selenium can be used to handle links on a page. A link is represented by the anchor tag. 

A link can be identified with the help of the locators like - link text and partial link text. 

We can use the link text attribute for an element for its identification and utilize the 

method find_element_by_link_text. With this, the first element with the matching value 

of the given link text is returned. 

The syntax for handling links is as follows: 

driver.find_element_by_link_text("value of link text") 

We can also use the partial link text attribute for an element for its identification and 

utilize the method find_element_by_partial_link_text. With this, the first element with 

the matching value of the given partial link text is returned. 

For both the locators, if there is no element with the matching value of the partial link 

text/link text, NoSuchElementException shall be thrown. 

The syntax for using the partial link text is as follows: 

driver.find_element_by_partial_link_text("value of partial ink text") 

Let us see the html code of a webelement, which is as follows: 

 

The link highlighted in the above image has a tagname - a and the partial link text - 

Refund. Let us try to click on this link after identifying it. 

 

Code Implementation 

The code implementation for handling links is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

17. Selenium Webdriver — Handling Links 



Selenium Webdriver        

   71 

 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify link with partial link text 

l = driver.find_element_by_partial_link_text('Refund') 

#perform click 

l.click() 

print('Page navigated after click: ' + driver.title) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application(obtained from 

the driver.title method) - Return, Refund & Cancellation Policy - Tutorialspoint gets 

printed in the console. 

Let us now see the html code of another webelement: 

 

The link highlighted in the above image has a tagname - a and the link text - Privacy 

Policy. Let us try to click on this link after identifying it. 

 

Code Implementation 

The code implementation for handling link is as follows: 

from selenium import webdriver 



Selenium Webdriver        

   72 

 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify link with link text 

l = driver.find_element_by_link_text('Privacy Policy') 

#perform click 

l.click() 

print('Page navigated after click: ' + driver.title) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application(obtained from 

the driver.title method) - About Privacy Policy at Tutorials Point - Tutorialspoint gets 

printed in the console. 



Selenium Webdriver        

   73 

 

Selenium can be used to input text to an edit box. An edit box is represented by the 

input tag and its type attribute should have the value as text. It can be identified with 

any of the locators like - id, class, name, css, xpath and tagname. 

To input a value into an edit box, we have to use the method send_keys.  

Let us see the html code of a webelement: 

 

The edit box highlighted in the above image has a tagname - input. Let us try to input 

some text into this edit box after identifying it. 

Code Implementation 

The code implementation for handling edit box is as follows: 

from selenium import webdriver 

#set chromedriver.exe path 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#identify edit box with tagname 

l = driver.find_element_by_tag_name('input') 

#input text 

l.send_keys('Selenium Python') 

18. Selenium Webdriver — Handling Edit Boxes 



Selenium Webdriver        

   74 

 

#obtain value entered 

v = l.get_attribute('value') 

print('Value entered: ' + v) 

#driver close 

driver.close() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value entered within the edit box (obtained 

from the get_attribute method) - Selenium Python gets printed in the console. 



Selenium Webdriver        

   75 

 

Selenium has the color conversion support class. We have to add the statement from 

selenium.webdriver.support.color import Color to convert colors to rgba/hex format.  

Code Implementation 

The code implementation for color conversion support is as follows: 

from selenium import webdriver 

from selenium.webdriver.support.color import Color 

#color conversion to rgba format 

print(Color.from_string('#00fe37').rgba) 

#color conversion to hex format 

print(Color.from_string('rgb(1, 200, 5)').hex) 

#color conversion to rgba format 

print(Color.from_string('green').rgba) 

Output 

The output is as follows: 

 

19. Selenium Webdriver — Color Support 



Selenium Webdriver        

   76 

 

We can generate HTML reports with our Selenium test using the Pytest Testing 

Framework. To configure Pytest, we have to run the following command:  

pip install pytest.  

Once the installation is done, we can run the command to check the Pytest version 

installed:  

pytest –version 

 As a Pytest standard, the Python file containing the Pytest should start with test_ or end 

with _test. Also, all the test steps should be within a method whose name should start 

with test_. 

To run a Pytest file, we can open the terminal and move from the current directory to 

the directory of the Pytest file that we want to execute. Then, run the command 

mentioned below:  

py.test -v -s. 

Let us look at a project structure following the Pytest Test Framework. 

 

In the above image, it shows that the Pytest file has the name test_p.py and it contains 

a test method with the name test_SeleniumTest. 

To generate a HTML report for a Selenium test, we have to install a plugin with the 

command: pip install pytest-html. To generate the report, we have to move from the 

current directory to the directory of the Pytest file that we want to execute. Then run the 

command: pytest --html=report.html. 

After this command is successfully executed, a new file called the report.html gets 

generated within the project. 

20. Selenium Webdriver — Generating HTML Test 
Reports in Python 



Selenium Webdriver        

   77 

 

 

Right-click on the report.html and select the option Copy Path.  

  



Selenium Webdriver        

   78 

 

 

Open the path of the file copied in a browser, to get the HTML report. 

 

The HTML report gives information of the Environment on which the test is executed. It 

also contains the information on test Summary and Results. 

 



Selenium Webdriver        

   79 

 

We can read and write data from an excel sheet in Selenium webdriver in Python. An 

excel workbook consists of multiple sheets and each sheet consists of cells and columns. 

To work with Excel in Python (with extensions .xlsx, .xlsm, and so on) we have to utilise 

the OpenPyXL library. To install this package, we have to run the following command:  

pip install openpyxl.  

Also, we have to add the statement import openpyxl in our code. 

 

To open an excel workbook, the method is load_workbook and pass the path of the excel 

file as a parameter to this method. To identify the active sheet, we have to use the 

active method on the workbook object. 

To read a cell, the method cell is applied on the active sheet and the row and column 

numbers are passed as parameters to this method. Then, the value method is applied on 

a particular cell to read values within it. 

Let us read the value at the third row and second column having the value D as shown 

below in an excel workbook of name Data.xlsx: 

 

Code Implementation 

The code implementation read/write data from Excel to Selenium Webdriver in Python is 

as follows: 

   import openpyxl 

   #configure workbook path 

   b = openpyxl.load_workbook("C:\\Data.xlsx") 

   #get active sheet 

   sht = b.active 

21. Selenium Webdriver — Read/Write data from 
Excel 



Selenium Webdriver        

   80 

 

   #get cell address within active sheet 

   cl = sht.cell (row = 3, column = 2) 

   #read value with cell  

   print("Reading value from row-3, col-2: ") 

   print (cl.value) 

Output 

The output is as follows: 

 

To write a cell, the method cell is applied on the active sheet and the row and column 

numbers are passed as parameters to this method. Then, the value method is applied on 

a particular cell to write on it. Finally, the workbook is to be saved with the method save, 

the path of the file to be saved is passed as a parameter to this method. 

We shall take an Excel name testdata.xlsx and save it within the data folder within our 

project. We shall write the value - Selenium Python in the third row and seventh column. 

 

Code Implementation 

The code implementation for working on workbook in Selenium Webdriver is as follows: 



Selenium Webdriver        

   81 

 

from selenium import webdriver 

import openpyxl 

#load workbook 

b= openpyxl.load_workbook('../data/testdata.xlsx') 

#get active worksheet 

sh = b.active 

# write value in third row, 8th column 

sh.cell(row=3, column=8).value = "Selenium Python" 

#save workbook 

b.save("../data/testdata.xlsx") 

#identify cell 

cl = sh.cell(row=3, column=8) 

#read cell value 

print("Reading value from row-3, col-8: ") 

print(cl.value) 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the value - Selenium Python is successfully 

written on the cell with address - row-3 and column - 8.  



Selenium Webdriver        

   82 

 

We can handle checkboxes with Selenium webdriver. A checkbox is represented by input 

tagname in the html code and its type attribute should have the value as checkbox. 

Methods 

The methods to handle the checkboxes are listed below: 

 Click: Used to check a checkbox. 

 is_selected:Used to check if a checkbox is checked or not. It returns a boolean 

value, true is returned in case a checkbox is checked. 

Let us see the html code of a checkbox, which is as follows: 

22. Selenium Webdriver — Handling Checkboxes 



Selenium Webdriver        

   83 

 

 

Code Implementation 

The code implementation for handling checkboxes is as follows: 

from selenium import webdriver 



Selenium Webdriver        

   84 

 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://the-internet.herokuapp.com/checkboxes") 

#identify element 

l = driver.find_element_by_xpath("//input[@type='checkbox']") 

l.click() 

if l.is_selected(): 

   print('Checkbox is checked') 

else: 

   print('Checkbox is not checked') 

#close driver 

driver.close() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the message - Checkbox is checked is printed 

since the is_selected method applied on the checkbox returned true value. 



Selenium Webdriver        

   85 

 

Selenium supports multiple browsers like Chrome, Firefox, Safari, IE, and so on. For 

running the tests in a particular browser we should have to download the executable file 

for that browser from the below link: 

https://www.selenium.dev/downloads/ 

Once the link is launched, scroll down to the Browsers section. Under this, all the 

available browsers which support execution are listed. Click on the documentation link to 

download the corresponding executable file. 

 

For example, to trigger the tests on Chrome, click on the documentation link. In the next 

page, the list of all the versions of chromedriver shall be available. 

23. Selenium Webdriver — Executing Tests in 
Multiple Browsers 

https://www.selenium.dev/downloads/


Selenium Webdriver        

   86 

 

 

Click on a link to download the chromedriver.exe file which matches with our local 

Chrome browser version. On the following page, we shall be directed to the zip files 

available for download for the platforms Windows, Linux, and Mac. 

 

Click on a link to download the chromedriver.exe file which matches with our local 

operating system. Once the download is done, unzip the file and save it within the 

project directory. 

For example in our project, we have saved the chromedriver.exe file within the drivers 

folder. Then we have to specify the path of this file within the 

webdriver.Chrome(executable_path='<path of chromedriver>'). 

 

 



Selenium Webdriver        

   87 

 

 

Code Implementation 

The code implementation for supporting multiple browsers is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#get browse name 

l = driver.capabilities['browserName'] 

print('Browser name: ' + l) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 



Selenium Webdriver        

   88 

 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the browser in which the test has executed - 

chrome gets printed in the console. 

Similarly, if we want to execute the test in the Firefox browser (versions greater than 

47), we have to use the geckodriver.exe file. 



Selenium Webdriver        

   89 

 

Selenium supports headless execution. In the Chrome browser, the headless execution 

can be implemented with the help of the ChromeOptions class.  We have to create an 

object of this class and apply the add_arguments method on it. Finally, pass the 

parameter --headless to this method.  

Let us obtain the title - About Careers at Tutorials Point - Tutorialspoint of the page 

launched in a headless mode: 

 

Code Implementation 

The code implementation for the headless execution is as follows: 

from selenium import webdriver 

from selenium.webdriver.chrome.options import Options 

#object of Options class 

c = Options() 

#passing headless parameter 

c.add_argument("--headless") 

#adding headless parameter to webdriver object 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver', options=c) 

# implicit wait time 

driver.implicitly_wait(5) 

# url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

print('Page title: ' + driver.title) 

# driver quit 

driver.quit() 

24. Selenium Webdriver — Headless Execution 



Selenium Webdriver        

   90 

 

Output 

The output is as follows 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application(obtained from 

the driver.title method) - About Careers at Tutorials Point - Tutorialspoint gets printed in 

the console. 



Selenium Webdriver        

   91 

 

Selenium provides wait support for implementations of explicit and fluent waits for 

synchronization. For this, we have to use the class 

selenium.webdriver.support.wait.WebDriverWait. 

The syntax for the wait support is as follows: 

w = WebDriverWait(driver, 5) 

w.until(EC.presence_of_element_located((By.TAG_NAME, 'h1'))) 

Once we create an object of the WebDriverWait class, we can apply the below methods 

on them: 

 until: It is used to invoke the method given with the driver as a parameter until 

the return value is true. 

 until_not: It is used to invoke the method given with the driver as a parameter 

until the return value is not true. 

Let us wait for the text Team @ Tutorials Point which becomes available on clicking the 

link - Team on the page with the help of WebDriverWait methods. 

 

On clicking the Team link, the text Team @ Tutorials Point appears. 

 

25. Selenium Webdriver — Wait Support 



Selenium Webdriver        

   92 

 

Code Implementation 

The code implementation for wait support is as follows: 

from selenium import webdriver 

from selenium.webdriver.common.by import By 

from selenium.webdriver.support import expected_conditions as EC 

from selenium.webdriver.support.wait import WebDriverWait 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify element 

l = driver.find_element_by_link_text('Team') 

l.click() 

#expected condition for explicit wait 

w = WebDriverWait(driver, 5) 

w.until(EC.presence_of_element_located((By.TAG_NAME, 'h1'))) 

s = driver.find_element_by_tag_name('h1') 

#obtain text 

t = s.text 

print('Text is: ' + t) 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the text (obtained from the text method) - 

Team @ Tutorials Point gets printed in the console. 



Selenium Webdriver        

   93 

 

Selenium can handle static dropdowns with the help of the Select class. A dropdown is 

identified with select tagname and its options are represented with the tagname option. 

The statement - from selenium.webdriver.support.select import Select should be added 

to work with Select class.  

 

Methods 

The methods under the Select class are listed below: 

select_by_visible_text (arg)   

It shall select all the options which displayed text matches with the argument. 

The syntax for selecting options displaying text matches is as follows: 

sel = Select (driver.find_element_by_id ("name")) 

sel.select_by_visible_text ('Visible Text') 

select_by_value (arg)  

It shall select all the options having a value that matches with the argument. 

The syntax for selecting all options having matching value as per the argument is as 

follows: 

 

sel = Select (driver.find_element_by_id ("name")) 

sel.select_by_value ('Value') 

select_by_index (arg) 

It shall select an option that matches with the argument. The index begins from zero. 

 

The syntax for selecting the option having matching value as per the argument is as 

follows: 

 

sel = Select (driver.find_element_by_id ("name")) 

sel.select_by_index (1) 

deselect_by_visible_text (arg)   

It shall deselect all the options which displayed text matches with the argument. 

26. Selenium Webdriver — Select Support 



Selenium Webdriver        

   94 

 

 

The syntax for deselecting all options having matching value as per the argument is as 

follows: 

 

sel = Select (driver.find_element_by_id ("name")) 

sel.deselect_by_visible_text ('Visible Text') 

deselect_by_value (arg)  

It shall deselect all the options having a value that matches with the argument. 

 
The syntax for deselecting all options having matching value as per the argument is as 

follows: 

 

sel = Select (driver.find_element_by_id ("name")) 

sel.deselect_by_value ('Value') 

deselect_by_index(arg)  
It shall deselect the option that matches with the argument. The index begins from zero. 

 

The syntax for deselecting an option having matching value as per the argument is as 

follows: 

 
sel = Select(driver.find_element_by_id ("name")) 

sel.deselect_by_index(1) 

all_selected_options   

It shall yield all the options which are selected for a dropdown. 

first_selected_option  

It shall yield the first selected option for a multi-select dropdown or the currently 

selected option in a normal dropdown.  

options  

It shall yield all the options available under the select tagname. 

deselect_all  

It shall clear all the selected options in a multi-select dropdown. 

Code Implementation 

The code implementation for handling static dropdowns with Select class is as follows: 

from selenium import webdriver 

from selenium.webdriver.support.select import Select 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 



Selenium Webdriver        

   95 

 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://the-internet.herokuapp.com/dropdown") 

#object of Select 

s= Select(driver.find_element_by_id("dropdown")) 

#select option by value 

s.select_by_value("1") 

Output 

The output is as follows: 

 
The output shows that the option “Option 1” gets selected in the dropdown. 



Selenium Webdriver        

   96 

 

Selenium can execute JavaScript commands with the help of the execute_script method. 

The command to be executed is passed as a parameter to this method. We can perform 

browser operations like clicking a link with the help of the JavaScript Executor. 

The syntax for executing the Javascript commands is as follows: 

b = driver.find_element_by_id("txt") 

 driver.execute_script ("arguments[0].click();",b) 

Code Implementation 

The code implementation for executing the Javascript commands is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#click with JavaScript Executor 

b = driver.find_element_by_link_text("Cookies Policy") 

driver.execute_script ("arguments[0].click();",b) 

print('Page title after click: '+ driver.title) 

#driver quit 

driver.quit() 

Output 

The output is as follows 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application after the click 

(obtained from the driver.title method) - About Cookies Policy at Tutorials Point - 

Tutorialspoint gets printed in the console. 

27. Selenium Webdriver — JavaScript Executor 



Selenium Webdriver        

   97 

 

execute_script 

Selenium cannot directly handle scrolling functionality directly. Selenium can execute 

JavaScript commands with the help of the method - execute_script. The JavaScript 

command to be executed is passed as a parameter to this method. 

The syntax for executing the Javascript commands with the help of execute_script 

method is as follows:  

driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") 

The method scrollTo is used to scroll to a location in the browser window. The 

scrollHeight is a property of an element. The document.body.scrollHeight yields the 

height of the webpage. 

Code Implementation 

The code implementation for executing the Javascript commands with the help of 

execute_script method is as follows is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#scroll to page bottom 

driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") 

Output 

The output is as follows: 



Selenium Webdriver        

   98 

 

 

The output shows that the web page is scrolled to the bottom of the page. 



Selenium Webdriver        

   99 

 

Selenium Chrome webdriver Options are handled with the class - 

selenium.webdriver.chrome.options.Options.  

Methods 

Some of the methods of the above mentioned  class are listed below: 

● add_argument(args): It is used to append arguments to a list. 

● add_encoded_extension(ext):It is used to append base 64 encoded string 

and the extension data to a list that will be utilised to get it to the ChromeDriver. 

● add_experimental_option(n, val): It is used to append an experimental 

option which is passed to the Chrome browser. 

● add_extension(ext): It is used to append the extension path to a list that will 

be utilised to get it to the ChromeDriver. 

● set_capability(n, val): It is used to define a capability. 

● to_capabilities(n, val): It is used to generate capabilities along with options 

and yields a dictionary with all the data. 

● arguments:It is used to yield arguments list required for the browser. 

● binary_location: It is used to obtain the binary location. If there is no path, an 

empty string is returned. 

● debugger_address:  It is used to yield the remote devtools object. 

experimental_options: It is used to yield a dictionary of the Chrome  experimental 

options. 

●  extensions: It is used to yield an extensions list which shall be loaded to the 

Chrome browser. 

●  headless:It is used to check if the headless argument is set or not. 

Code Implementation 

The code implementation for the Selenium Chrome Webdriver options is as follows: 

from selenium import webdriver 

from selenium.webdriver.chrome.options import Options 

#object of Options class 

c = Options() 

#passing headless parameter 

28. Selenium Webdriver — Chrome WebDriver 
Options 



Selenium Webdriver        

   100 

 

c.add_argument("--headless") 

#adding headless parameter to webdriver object 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver', options=c) 

# implicit wait time 

driver.implicitly_wait(5) 

# url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

print('Page title: ' + driver.title) 

# driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the page title of the application(obtained from 

the driver.title method) - About Careers at Tutorials Point - Tutorialspoint gets printed in 

the console. 



Selenium Webdriver        

   101 

 

Selenium cannot directly handle scrolling functionality directly. Selenium can execute 

JavaScript commands with the help of the method - execute_script. The JavaScript 

command to be executed is passed as a parameter to this method. 

The syntax for executing the Javascript commands is as follows: 

driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") 

The method scrollTo is used to scroll to a location in the browser window. The 

scrollHeight is a property of an element. The document.body.scrollHeight yields the 

height of the webpage. 

Code Implementation 

The code implementation for executing the Javascript commands is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#scroll to page bottom 

driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") 

Output 

The output is as follows: 

29. Selenium Webdriver — Scroll Operations 



Selenium Webdriver        

   102 

 

 

The output shows that the web page is scrolled to the bottom of the page. 



Selenium Webdriver        

   103 

 

We can capture screenshots with the Selenium webdriver using the save_screenshot 

method. The path of the screenshot captured is passed as a parameter to this method. 

The syntax for capturing the screenshot is as follows: 

driver.save_screenshot('logo.png') 

Here, an image with the name logo.png should get saved within the project. 

Code Implementation 

The code implementation for capturing the screenshot is as follows: 

from selenium import webdriver 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/index.htm") 

#capture screenshot - tutorialspoint.png within project 

driver.save_screenshot('tutorialspoint.png') 

#close driver 

driver.close() 

Output 

The output is as follows: 

 

The output shows that an image tutorialspoint.png gets created within the project. It 

contains the captured screenshot. 

30. Selenium Webdriver — Capture Screenshots 



Selenium Webdriver        

   104 

 

Selenium can perform mouse movements, key press, hovering on an element, right-

click, drag and drop actions, and so on with the help of the ActionsChains class. The 

method context_click performs right-click or context click on an element.  

The syntax for using the right click or context click is as follows: 

context_click(e=None) 

Here, e is the element to be right-clicked. If ‘None’ is mentioned, the click is performed 

on the present mouse position. We have to add the statement from selenium.webdriver 

import ActionChains to work with the ActionChains class.  

Code Implementation 

The code implementation for using the right click or context click is as follows: 

from selenium import webdriver 

from selenium.webdriver import ActionChains 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("https://www.tutorialspoint.com/about/about_careers.htm") 

#identify element 

s = driver.find_element_by_xpath("//*[text()='Company']") 

#object of ActionChains 

a = ActionChains(driver) 

#right click then perform 

a.context_click(s).perform() 

Output 

The output is as follows: 

31. Selenium Webdriver — Right Click 



Selenium Webdriver        

   105 

 

 

After execution, the link with the name - Company has been right-clicked and all the 

new options get displayed as a result of the right-click. 



Selenium Webdriver        

   106 

 

Selenium can perform mouse movements, key press, hovering on an element, double 

click, drag and drop actions, and so on with the help of the ActionsChains class. The 

method double_click performs double-click on an element. 

The syntax for using the double click is as follows: 

double_click(e=None) 

Here, e is the element to be double-clicked. If None is mentioned, the click is performed 

on the present mouse position. We have to add the statement from selenium.webdriver 

import ActionChains to work with the ActionChains class.  

Let us perform the double click on the below element: 

 

In the above image, it is seen that on double clicking the Double Click me! button, an 

alert box gets generated. 

Code Implementation 

The code implementation for using the double click is as follows: 

from selenium import webdriver 

from selenium.webdriver import ActionChains 

from selenium.webdriver.common.alert import Alert 

driver = webdriver.Chrome(executable_path='../drivers/chromedriver') 

#implicit wait time 

driver.implicitly_wait(5) 

#url launch 

driver.get("http://www.uitestpractice.com/Students/Actions") 

#identify element 

s = driver.find_element_by_name("dblClick") 

#object of ActionChains 

a = ActionChains(driver) 

#right click then perform 

a.double_click(s).perform() 

32. Selenium Webdriver — Double Click 



Selenium Webdriver        

   107 

 

#switch to alert 

alrt = Alert(driver) 

# get alert text 

print(alrt.text) 

#accept alert 

alrt.accept() 

#driver quit 

driver.quit() 

Output 

The output is as follows: 

 

The output shows the message - Process with exit code 0 meaning that the above 

Python code executed successfully. Also, the Alert text - Double Clicked! gets printed in 

the console. The Alert got generated by double clicking the Double Click me! button. 

 

 


