RUBY/XML, XSLT AND XPATH TUTORIAL

What is XML ?

The Extensible Markup Language XML is a markup language much like HTML or SGML. This is
recommended by the World Wide Web Consortium and available as an open standard.

XML is a portable, open source language that allows programmers to develop applications that
can be read by other applications, regardless of operating system and/or developmental
language.

XML is extremely useful for keeping track of small to medium amounts of data without requiring a
SQL-based backbone.

XML Parser Architectures and APIs:
There are two different flavors available for XML parsers:

e SAX-like Streaminterfaces : Here you register callbacks for events of interest and then let the
parser proceed through the document. This is useful when your documents are large or you
have memory limitations, it parses the file as it reads it from disk, and the entire file is never
stored in memory.

¢ DOM-like Objecttreeinterfaces = This is World Wide Web Consortium recommendation wherein
the entire file is read into memory and stored in a hierarchical tree — based form to represent
all the features of an XML document.

SAX obviously can't process information as fast as DOM can when working with large files. On the
other hand, using DOM exclusively can really kill your resources, especially if used on a lot of small
files.

SAX is read-only, while DOM allows changes to the XML file. Since these two different APIs literally
complement each other there is no reason why you can't use them both for large projects.

Parsing and Creating XML using Ruby:

The most common way to manipulate XML is with the REXML library by Sean Russell. Since 2002,
REXML has been part of the standard Ruby distribution.

REXML is a pure-Ruby XML processor conforming to the XML 1.0 standard. It is a nonvalidating
processor, passing all of the OASIS nonvalidating conformance tests.

REXML parser has the following advantages over other available parsers:
e Itis written 100 percentin Ruby.
e |t can be used for both SAX and DOM parsing.
e ltis lightweight. less than 2000 lines of code.
¢ Methods and classes are really easy-to-understand.
e SAX2-based API and Full XPath support.
e Shipped with Ruby installation and no separate installation is required.

For all our XML code examples, let's use a simple XML file as an input:

<collection shelf="New Arrivals'">

<movie title="Enemy Behind">
<type>War, Thriller</type>
<format>DVD</format>
<year>2003</year>
<rating>PG</rating>

http://www.tutorialspoint.com/ruby/ruby_xml_xslt.htm

<stars>10</stars>

<description>Talk about a US-Japan war</description>
</movie>
<movie title="Transformers">

<type>Anime, Science Fiction</type>

<format>DVD</format>

<year>1989</year>

<rating>R</rating>

<stars>8</stars>

<description>A schientific fiction</description>
</movie>

<movie title="Trigun">

<type>Anime, Action</type>

<format>DVD</format>

<episodes>4</episodes>

<rating>PG</rating>

<stars>10</stars>

<description>Vash the Stampede!</description>
</movie>
<movie title="Ishtar">

<type>Comedy</type>

<format>VHS</format>

<rating>PG</rating>

<stars>2</stars>

<description>Viewable boredom</description>
</movie>
</collection>

DOM-like Parsing:

Let's first parse our XML data in tree fashion. We begin by requiring the rexml/document library;
often we do an include REXML to import into the top-level namespace for convenience.

#1/usr/bin/ruby -w

require 'rexml/document'
include REXML

xmlfile = File.new("movies.xml")
xmldoc = Document.new(xmlfile)

Now get the root element
root = xmldoc.root
puts "Root element : " + root.attributes["shelf"]

This will output all the movie titles.
xmldoc.elements.each("collection/movie"){

|le| puts "Movie Title : " + e.attributes["title"]
}

This will output all the movie types.
xmldoc.elements.each("collection/movie/type") {
le| puts "Movie Type : " + e.text

This will output all the movie description.
xmldoc.elements.each("collection/movie/description") {
|e| puts "Movie Description : " + e.text

}
This will produce the following result:

Root element : New Arrivals
Movie Title : Enemy Behind
Movie Title : Transformers
Movie Title : Trigun

Movie Title : Ishtar

Movie Type : War, Thriller

Movie Type : Anime, Science Fiction

Movie Type : Anime, Action

Movie Type : Comedy

Movie Description : Talk about a US-Japan war
Movie Description : A schientific fiction
Movie Description : Vash the Stampede!

Movie Description : Viewable boredom

SAX-like Parsing:

To process the same data, movies.xml, file in a stream-oriented way we will define a listener class
whose methods will be the target of callbacks from the parser.

NOTE: It is not suggested to use SAX-like parsing for a small file, this is just for a demo example.

#1/usr/bin/ruby -w

require 'rexml/document'
require 'rexml/streamlistener'
include REXML

class MyListener
include REXML::StreamListener
def tag_start(*args)

puts "tag_start: #{args.map {|x| x.inspect}.join(', "')}"
end
def text(data)
return if data =~ /M\w*$/ # whitespace only
abbrev = data[040] + (data_length > 40 2 ", ..M ||||)

puts " text #{abbrev.inspect}"
end
end
list = MylListener.new

xmlfile = File.new("movies.xml")
Document.parse_stream(xmlfile, list)

This will produce the following result:

tag_start:
tag_start:
: "type", {}

tag_start
text

tag_start:
tag_start:
tag_start:
tag_start:
tag_start:

text

tag_start:

tag_start
text

tag_start:
tag_start:
tag_start:
tag_start:
tag_start:

text

tag_start:
: “type", {}

tag_start
text

tag_start:
tag_start:
tag_start:
tag_start:
tag_start:

"collection", {"shelf"=>"New Arrivals"}
"movie", {"title"=>"Enemy Behind"}

"War, Thriller"
"format", {}
"year", {}
"rating", {3}
"stars", {}
"description", {}
"Talk about a US-Japan war"

"movie", {"title"=>"Transformers"}
: "type", {}
: "Anime, Science Fiction"
"format", {}
"year", {}
"rating", {3}
"stars", {}

"description", {}
"A schientific fiction"
"movie", {"title"=>"Trigun"}

"Anime, Action"

"format", {}

"episodes", {}
"rating", {3}
"stars", {}
"description", {}

text : "Vash the Stampede!"
tag_start: "movie", {"title"=>"Ishtar"}
tag_start: "type", {}
tag_start: "format", {}
tag_start: "rating", {}
tag_start: "stars", {}
tag_start: "description", {}

text : "Viewable boredom"

XPath and Ruby:

An alternative way to view XML is XPath. This is a kind of pseudo-language that describes how to
locate specific elements and attributes in an XML document, treating that document as a logical
ordered tree.

REXML has XPath support via the XPath class. It assumes tree-based parsing documentobjectmodel as
we have seen above.

#1/usr/bin/ruby -w

require 'rexml/document'
include REXML

xmlfile = File.new("movies.xml")
xmldoc = Document.new(xmlfile)

Info for the first movie found
movie = XPath.first(xmldoc, "//movie")
p movie

Print out all the movie types
XPath.each(xmldoc, "//type") { |e| puts e.text }

Get an array of all of the movie formats.

names = XPath.match(xmldoc, "//format").map {|x| x.text }
p names

This will produce the following result:

<movie title='Enemy Behind'> ... </>
War, Thriller

Anime, Science Fiction

Anime, Action

Comedy

[IIDVDII, IIDVDII, IIDVDII, IIVHSII]

XSLT and Ruby:

There are two XSLT parsers available that Ruby can use. A brief description of each is given here:

Ruby-Sablotron:

This parser is written and maintained by Masayoshi Takahashi. This is written primarily for Linux
OS and requires the following libraries:

e Sablot
e lconv
e Expat
You can find this module at Ruby-Sablotron.

XSLT4R:

XSLT4R is written by Michael Neumann and can be found at the RAA in the Library section under

http://www.rubycolor.org/sablot

XML. XSLT4R uses a simple commandline interface, though it can alternatively be used within a
third-party application to transform an XML document.

XSLT4R needs XMLScan to operate, which is included within the XSLT4R archive and which is also
a 100 percent Ruby module. These modules can be installed using standard Ruby installation
method i. e., rubyinstall. rb.

XSLT4R has the following syntax:

ruby xslt.rb stylesheet.xsl document.xml [arguments]

If you want to use XSLT4R from within an application, you can include XSLT and input the
parameters you need. Here is the example:

require "xslt"

stylesheet = File.readlines('"stylesheet.xsl").to_s
xml_doc = File.readlines("document.xml").to_s
arguments = { 'image_dir' => '/....' }

sheet = XSLT::Stylesheet.new(stylesheet, arguments)

output to StdoOut
sheet.apply(xml_doc)

output to 'str'

Str - nn

sheet.output = [str]
sheet.apply(xml_doc)

Further Reading:

e For a complete detail on REXML Parser, please refer to standard documentation for REXML
Parser Documentation.

- VAl ran rlir\uunlr\:sri YCILTA D. 'Frt.'\nq RAA Repositorv_
Loading [Mathjax]/jax/output/HTML-CSS/jax.js

http://www.germane-software.com/software/rexml/
http://raa.ruby-lang.org/project/xslt4r/

