RUBY VARIABLES, CONSTANTS AND LITERALS

Variables are the memory locations which hold any data to be used by any program.

There are five types of variables supported by Ruby. You already have gone through a small
description of these variables in previous chapter as well. These five types of variables are
explained in this chapter.

Ruby Global Variables:

Global variables begin with $. Uninitialized global variables have the value nil and produce
warnings with the -w option.

Assignment to global variables alters global status. It is not recommended to use global variables.
They make programs cryptic.

Here is an example showing usage of global variable.

#!/usr/bin/ruby

$global_variable = 10
class Classil
def print_global
puts "Global variable in Classl is #$global_variable"
end
end
class Class2
def print_global
puts "Global variable in Class2 is #$global_variable"
end
end

classlobj = Classl.new
classlobj.print_global
class2obj = Class2.new
class2obj.print_global

Here $global_variable is a global variable. This will produce the following result:

NOTE: In Ruby you CAN access value of any variable or constant by putting a hash |#| character
just before that variable or constant.

Global variable in Classl is 10
Global variable in Class2 is 10

Ruby Instance Variables:

Instance variables begin with @. Uninitialized instance variables have the value nil and produce
warnings with the -w option.

Here is an example showing usage of Instance Variables.

#!1/usr/bin/ruby

class Customer

def initialize(id, name, addr)
@cust_id=id
@cust_name=name
@cust_addr=addr

end

def display_details()
puts "Customer id #@cust_id"
puts '"Customer name #@cust_name"

http://www.tutorialspoint.com/ruby/ruby_variables.htm

puts "Customer address #@cust_addr"
end
end

Create Objects
custi=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")
cust2=Customer .new("2", "Poul", '"New Empire road, Khandala")

Call Methods
custl.display_details()
cust2.display_details()

Here, @cust_id, @cust_ name and @cust_addr are instance variables. This will produce the
following result:

Customer id 1

Customer name John

Customer address Wisdom Apartments, Ludhiya
Customer id 2

Customer name Poul

Customer address New Empire road, Khandala

Ruby Class Variables:

Class variables begin with @@ and must be initialized before they can be used in method
definitions.

Referencing an uninitialized class variable produces an error. Class variables are shared among
descendants of the class or module in which the class variables are defined.

Overriding class variables produce warnings with the -w option.

Here is an example showing usage of class variable:

#!1/usr/bin/ruby

class Customer
@@no_of_customers=0
def initialize(id, name, addr)
@cust_id=id
@cust_name=name
@cust_addr=addr
end
def display_details()
puts "Customer id #@cust_id"
puts '"Customer name #@cust_name"
puts "Customer address #@cust_addr"
end
def total_no_of_customers()
@@no_of_customers += 1
puts "Total number of customers: #@@no_of_customers"
end
end

Create Objects
custi=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")
cust2=Customer .new("2", "Poul", "New Empire road, Khandala")

Call Methods

custl.total_no_of_customers()
cust2.total_no_of_customers()

Here @@no_of customers is a class variable. This will produce the following result:

Total number of customers: 1
Total number of customers: 2

Ruby Local Variables:

Local variables begin with a lowercase letter or _. The scope of a local variable ranges from class,
module, def, or do to the corresponding end or from a block's opening brace to its close brace {}.

When an uninitialized local variable is referenced, it is interpreted as a call to a method that has
no arguments.

Assignment to uninitialized local variables also serves as variable declaration. The variables start
to exist until the end of the current scope is reached. The lifetime of local variables is determined
when Ruby parses the program.

In the above example local variables are id, name and addr.

Ruby Constants:

Constants begin with an uppercase letter. Constants defined within a class or module can be
accessed from within that class or module, and those defined outside a class or module can be
accessed globally.

Constants may not be defined within methods. Referencing an uninitialized constant produces an
error. Making an assignment to a constant that is already initialized produces a warning.

#1/usr/bin/ruby

class Example

VAR1 = 100
VAR2 = 200
def show

puts "Value of first Constant is #{VAR1}"
puts "Value of second Constant is #{VAR2}"
end
end

Create Objects

object=Example.new()
object.show

Here VAR1 and VAR2 are constant. This will produce the following result:

Value of first Constant is 100
Value of second Constant is 200

Ruby Pseudo-Variables:

They are special variables that have the appearance of local variables but behave like constants.
You can not assign any value to these variables.

self: The receiver object of the current method.

true: Value representing true.

false: Value representing false.

nil: Value representing undefined.

__FILE__: The name of the current source file.

__LINE__: The current line number in the source file.

Ruby Basic Literals:

The rules Ruby uses for literals are simple and intuitive. This section explains all basic Ruby
Literals.

Integer Numbers:

Ruby supports integer numbers. An integer number can range from -230 to 230-1 or -262 to 262-1,
Integers with-in this range are objects of class Fixnum and integers outside this range are stored in
objects of class Bignum.

You write integers using an optional leading sign, an optional base indicator
Oforoctal, Oxforhex, orObforbinary, followed by a string of digits in the appropriate base. Underscore
characters are ignored in the digit string.

You can also get the integer value corresponding to an ASCII character or escape sequence by
preceding it with a question mark.

Example:

123 # Fixnum decimal

1 234 # Fixnum decimal with underline
-500 # Negative Fixnum

0377 # octal

Oxff # hexadecimal

Ob1011 # binary

?a # character code for 'a‘

?\n # code for a newline (0x0a)
12345678901234567890 # Bignum

NOTE: Class and Objects are explained in a separate chapter of this tutorial.

Floating Numbers:

Ruby supports integer numbers. They are also numbers but with decimals. Floating-point numbers
are objects of class Float and can be any of the following:

Example:

123.4 # floating point value
1.0e6 # scientific notation
4E20 # dot not required

4e+20 # sign before exponential

String Literals:

Ruby strings are simply sequences of 8-bit bytes and they are objects of class String. Double-
quoted strings allow substitution and backslash notation but single-quoted strings don't allow
substitution and allow backslash notation only for \\ and \'

Example:

#!1/usr/bin/ruby -w

puts 'escape using "\\"';
puts 'That\'s right';

This will produce the following result:

escape using "\"
That's right

You can substitute the value of any Ruby expression into a string using the sequence #{ expr }.
Here, expr could be any ruby expression.

#!1/usr/bin/ruby -w

puts "Multiplication Value : #{24*60*60}";

This will produce the following result:

Multiplication Value : 86400

Backslash Notations:

Following is the list of Backslash notations supported by Ruby:

Notation Character represented

\n Newline 0x0a

\r Carriage return 0x0d

\f Formfeed 0x0c

\b Backspace 0x08

\a Bell 0x07

\e Escape 0x1b

\s Space 0x20

\nnn Octal notation nbeing0 - 7

\xnn Hexadecimal notation nbeingd -9, a - f,orA-F

\cx, \C-x Control-x
\M-x Meta-x c|0x80
\M-\C-x Meta-Control-x

\X Character x

For more detail on Ruby Strings, go through Ruby Strings.
Ruby Arrays:

Literals of Ruby Array are created by placing a comma-separated series of object references
between square brackets. A trailing comma is ignored.

Example:

#1/usr/bin/ruby

ary = ["fred", 10, 3.14, "This is a string", "last element",]
ary.each do |1i]

puts i
end

This will produce the following result:

fred

10

3.14

This is a string
last element

For more detail on Ruby Arrays, go through Ruby Arrays.
Ruby Hashes:

A literal Ruby Hash is created by placing a list of key/value pairs between braces, with either a

/ruby/ruby_strings.htm
/ruby/ruby_arrays.htm

comma or the sequence => between the key and the value. A trailing comma is ignored.
Example:

#!/usr/bin/ruby
hsh = colors = { "red" => 0xf00, 'green" => Ox0f0, "blue" => Ox00f }

hsh.each do |key, value|

print key, " is ", value, "\n"
end

This will produce the following result:

green is 240
red is 3840
blue is 15

For more detail on Ruby Hashes, go through Ruby Hashes.
Ruby Ranges:

A Range represents an interval.a set of values with a start and an end. Ranges may be constructed
using the s..e and s...e literals, or with Range.new.

Ranges constructed using .. run from the start to the end inclusively. Those created using ...
exclude the end value. When used as an iterator, ranges return each value in the sequence.

A range 1..5 means itincludes 1, 2, 3, 4, 5 values and a range 1...5 means itincludes 1, 2, 3, 4
values.

Example:

#!1/usr/bin/ruby
(10..15).each do |n|

print n, ' '
end

This will produce the following result:

10 11 12 13 14 15

Enr ltv\nro an:ill nn Diithy D:nnnc. nf\ +hrough RubM Ranges
Loading [Mathjax]/jax/output/HTML-CSS/jax.js

/ruby/ruby_hashes.htm
/ruby/ruby_ranges.htm

