RUBY/TK - CHECKBUTTON WIDGET

Description:

A Checkbutton is like a regular button, except that not only can the user press it, which will invoke
a command callback, but it also holds a binary value of some kind i. e., atoggle. Checkbuttons are
used all the time when a user is asked to choose between, e.g., two different values for an option.

A checkbutton can display a textual string, bitmap or image. If text is displayed, it must all be in a
single font, but it can occupy multiple lines on the screen (if it contains newlines or if wrapping
occurs because of the wraplength option) and one of the characters may optionally be underlined
using the underline option.

A checkbutton has all of the behavior of a simple button, including the following: it can display
itself in either of three different ways, according to the state option; it can be made to appear

raised, sunken, or flat; it can be made to flash; and itinvokes a Tcl command whenever mouse
button 1 is clicked over the checkbutton.

Syntax:

Here is a simple syntax to create this widget:

TkCheckButton.new(root) {
..... Standard Options....
..... Widget-specific Options....

Standard Options:
¢ activebackground
e activeforeground
e anchor
e background
e bitmap
e borderwidth
e compound
e cursor
¢ disabledforeground
e font
e foreground
¢ highlightbackground
¢ highlightcolor
¢ highlightthickness
e image
e justify
e padx

pady

http://www.tutorialspoint.com/ruby/ruby_tk_checkbutton.htm

relief
takefocus
text
textvariable
underline

wraplength

These options have been described in previous chapter.

Widget-specific Options:

SN

1

Options with Description
command => String

Specifies a Ruby command to associate with the button. This command is typically invoked
when mouse button 1 is released over the button window. Here you can associate a Ruby
method to be executed against mouse click. Built in function which can be called using
command option:

e deselect: Deselects the checkbutton and sets the associated variable to its "off"
value.

o flash: Flashes the checkbutton. This is accomplished by redisplaying the
checkbutton several times, alternating between active and normal colors.

e select: Selects the checkbutton and sets the associated variable to its "on" value.
¢ toggle: Toggles the selection state of the button, redisplaying it and modifying its
associated variable to reflect the new state.
height => Integer

Specifies a desired height for the button.

indicatoron => Boolean

Specifies whether or not the indicator should be drawn. Must be a proper boolean value. If
false, the relief option is ignored and the widget's relief is always sunken if the widget is
selected and raised otherwise.

offvalue => Integer

Specifies value to store in the button's associated variable whenever this button is
deselected. Defaults to 0.

onvalue => Integer

Specifies value to store in the button's associated variable whenever this button is
selected. Defaultsto 1

selectcolor => String

Specifies a background color to use when the button is selected. If indicatoron is true, then
the color applies to the indicator. If indicatoron is false, this color is used as the
background for the entire widget, in place of background or activebackground, whenever

the widget is selected.

7 selectimage => Image

Specifies an image to display inplaceoftheimageoption when the checkbutton is selected. This
option is ignored unless the image option has been specified.

8 state => String

Specifies one of three states for the button: normal, active, or disabled. In normal state the
button is displayed using the foreground and background options. The active state is
typically used when the pointer is over the button. In active state the button is displayed
using the activeforeground and activebackground options. Disabled state means that the
button should be insensitive.

9 variable => Variable

Specifies name of global variable to set to indicate whether or not this button is selected.
Defaults to the name of the button within its parent

10 width => Integer

Specifies a desired width for the button.

Event Bindings:

Ruby/Tk automatically creates class bindings for checkbuttons that give them the following default
behavior:

¢ A checkbutton activates whenever the mouse passes over it and deactivates whenever the
mouse leaves the checkbutton.

e When mouse button 1 is pressed over a checkbutton it is invoked
itsselectionstatetogglesandthecommandassociatedwiththebuttonisinvoked, ifthereisone.

e When a checkbutton has the input focus, the space key causes the checkbutton to be
invoked.

If the checkbutton's state is disabled then none of the above actions occur: the checkbutton is
completely non-responsive.

Examples:
require 'tk'

root = TkRoot.new
root.title = "Window"

CkhButtonl = TkCheckButton.new(root) do
text "Orange"
indicatoron "true"
background '"red"
relief "groove"
height 2
width 2
onvalue 'Orange'
place('height' => 25, 'width' => 100, 'x' => 10, 'y'=> 10)
command (select)
end
CkhButton2 = TkCheckButton.new(root) do
text '"Banana"
background '"red"

relief "groove"

height 2

width 2

onvalue 'Banana'

place('height' => 25, 'width' => 100, 'x' => 10, 'y'=> 40)
end
Tk.mainloop

This will produce the following result:
= Window E;]ﬁgﬂﬁg]

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

