
http://www.tutorialspoint.com/ruby/ruby_quick_guide.htm Copyright © tutorialspoint.com

RUBY QUICK REFERENCE GUIDERUBY QUICK REFERENCE GUIDE

Here is a quick reference guide for Ruby developers:

What is Ruby ?
Ruby is a pure object-oriented programming language. It was created in 1993 by Yukihiro
Matsumoto of Japan. Ruby is a general-purpose, interpreted programming language like PERL and
Python.

What is IRb ?
Interactive Ruby IRb provides a shell for experimentation. Within the IRb shell, you can
immediately view expression results, line by line.

This tool comes along with Ruby installation so you have nothing to do extra to have IRb working.
Just type irb at your command prompt and an Interactive Ruby Session will start.

Ruby Syntax:
Whitespace characters such as spaces and tabs are generally ignored in Ruby code, except
when they appear in strings.

Ruby interprets semicolons and newline characters as the ending of a statement. However, if
Ruby encounters operators, such as +, -, or backslash at the end of a line, they indicate the
continuation of a statement.

Identifiers are names of variables, constants, and methods. Ruby identifiers are case
sensitive. It mean Ram and RAM are two different idendifiers in Ruby.

Ruby comments start with a pound/sharp # character and go to EOL.

Reserved words:
The following list shows the reserved words in Ruby. These reserved words should not be used as
constant or variable names in your program, however, be used as method names.

BEGIN do next then

END else nil true

alias elsif not undef

and end or unless

begin ensure redo until

break false rescue when

case for retry while

class if return while

def in self __FILE__

defined? module super __LINE__

Here Docs in Ruby:
Here are different examples:

http://www.tutorialspoint.com/ruby/ruby_quick_guide.htm

#!/usr/bin/ruby -w
print <<EOF
 This is the first way of creating
 her document ie. multiple line string.
EOF
print <<"EOF"; # same as above
 This is the second way of creating
 her document ie. multiple line string.
EOF
print <<`EOC` # execute commands
 echo hi there
 echo lo there
EOC
print <<"foo", <<"bar" # you can stack them
 I said foo.
foo
 I said bar.
bar

Ruby Data Types:
Basic types are numbers, strings, ranges, arrays, and hashes.

Integer Numbers in Ruby:

123 # Fixnum decimal
1_6889 # Fixnum decimal with underline
-5000 # Negative Fixnum
0377 # octal
0xee # hexadecimal
0b1011011 # binary
?b # character code for 'b'
?\n # code for a newline (0x0a)
12345678901234567890 # Bignum

Float Numbers in Ruby:

1023.4 # floating point value
1.0e6 # scientific notation
4E20 # dot not required
4e+20 # sign before exponential

String Literals:
Ruby strings are simply sequences of 8-bit bytes and they are objects of class String.

'VariableName': No interpolation will be done

"#{VariableName} and Backslashes \n:" Interpolation will be done

%qVariableName: No interpolation will be done

%QVariableNameandBackslashes\n: Interpolation will be done

%VariableNameandBackslashes\n: Interpolation will be done

`echo command interpretation with interpolation and backslashes

%xechocommandinterpretationwithinterpolationandbackslashes

Backslash Notations:
Following is the list of Backslash notations supported by Ruby:

Notation Character represented

\n Newline 0x0a

\r Carriage return 0x0d

\f Formfeed 0x0c

\b Backspace 0x08

\a Bell 0x07

\e Escape 0x1b

\s Space 0x20

\nnn Octal notation nbeing0 − 7

\xnn Hexadecimal notation nbeing0 − 9, a − f, orA − F

\cx, \C-x Control-x

\M-x Meta-x c | 0x80

\M-\C-x Meta-Control-x

\x Character x

Ruby Arrays:
Literals of Ruby Array are created by placing a comma-separated series of object references
between square brackets. A trailing comma is ignored.

Example:

#!/usr/bin/ruby
ary = ["Ali", 10, 3.14, "This is a string", "last element",]
ary.each do |i|
 puts i
end

This will produce the following result:

Ali
10
3.14
This is a string
last element

Ruby Hashes:
A literal Ruby Hash is created by placing a list of key/value pairs between braces, with either a
comma or the sequence => between the key and the value. A trailing comma is ignored.

Example:

#!/usr/bin/ruby
hsh = colors = { "red" => 0xf00, "green" => 0x0f0 }
hsh.each do |key, value|
 print key, " is ", value, "\n"
end

This will produce the following result:

green is 240
red is 3840

Ruby Ranges:
A Range represents an interval.a set of values with a start and an end. Ranges may be constructed
using the s..e and s...e literals, or with Range.new.

Ranges constructed using .. run from the start to the end inclusively. Those created using ...
exclude the end value. When used as an iterator, ranges return each value in the sequence.

A range 1..5 means it includes 1, 2, 3, 4, 5 values and a range 1...5 means it includes 2, 3, 4 values.

Example:

#!/usr/bin/ruby
(10..15).each do |n|
 print n, ' '
end

This will produce the following result:

10 11 12 13 14 15

Variable Types:
$global_variable

@@class_variable

@instance_variable

[OtherClass::]CONSTANT

local_variable

Ruby Pseudo-Variables:
They are special variables that have the appearance of local variables but behave like constants.
You can not assign any value to these variables.

self: The receiver object of the current method.

true: Value representing true.

false: Value representing false.

nil: Value representing undefined.

__FILE__: The name of the current source file.

__LINE__: The current line number in the source file.

Ruby Predefined Variables:
Following table lists all the Ruby's predefined variables.

Variable Name Description

$! The last exception object raised. The exception object can also be
accessed using => in rescue clause.

$@ The stack backtrace for the last exception raised. The stack backtrace
information can retrieved by Exception#backtrace method of the last
exception.

$/ The input record separator newlinebydefault. gets, readline, etc., take their

input record separator as optional argument.

$\ The output record separator nilbydefault.

$, The output separator between the arguments to print and Array#join
nilbydefault. You can specify separator explicitly to Array#join.

$; The default separator for split nilbydefault. You can specify separator
explicitly for String#split.

$. The number of the last line read from the current input file. Equivalent
to ARGF.lineno.

$< Synonym for ARGF.

$> Synonym for $defout.

$0 The name of the current Ruby program being executed.

$$ The process pid of the current Ruby program being executed.

$? The exit status of the last process terminated.

$: Synonym for $LOAD_PATH.

$DEBUG True if the -d or --debug command-line option is specified.

$defout The destination output for print and printf ($stdout by default).

$F The variable that receives the output from split when -a is specified.
This variable is set if the -a command-line option is specified along with
the -p or -n option.

$FILENAME The name of the file currently being read from ARGF. Equivalent to
ARGF.filename.

$LOAD_PATH An array holding the directories to be searched when loading files with
the load and require methods.

$SAFE The security level

0 --> No checks are performed on externally supplied tainted data.
default

1 --> Potentially dangerous operations using tainted data are
forbidden.
2 --> Potentially dangerous operations on processes and files are
forbidden.
3 --> All newly created objects are considered tainted.
4 --> Modification of global data is forbidden.

$stdin Standard input STDINbydefault.

$stdout Standard output STDOUTbydefault.

$stderr Standard error STDERRbydefault.

$VERBOSE True if the -v, -w, or --verbose command-line option is specified.

$- x The value of interpreter option -x x = 0, a, d, F, i, K, l, p, v. These options
are listed below

$-0 The value of interpreter option -x and alias of $/.

$-a The value of interpreter option -x and true if option -a is set. Read-only.

$-d The value of interpreter option -x and alias of $DEBUG

$-F The value of interpreter option -x and alias of $;.

$-i The value of interpreter option -x and in in-place-edit mode, holds the
extension, otherwise nil. Can enable or disable in-place-edit mode.

$-I The value of interpreter option -x and alias of $:.

$-l The value of interpreter option -x and true if option -lis set. Read-only.

$-p The value of interpreter option -x and true if option -pis set. Read-only.

$_ The local variable, last string read by gets or readline in the current
scope.

$~ The local variable, MatchData relating to the last match. Regex#match
method returns the last match information.

n(1, 2, 3...) The string matched in the nth group of the last pattern match.
Equivalent to m[n], where m is a MatchData object.

$& The string matched in the last pattern match. Equivalent to m[0], where
m is a MatchData object.

$` The string preceding the match in the last pattern match. Equivalent to
m.pre_match, where m is a MatchData object.

$' The string following the match in the last pattern match. Equivalent to
m.post_match, where m is a MatchData object.

$+ The string corresponding to the last successfully matched group in the
last pattern match.

$+ The string corresponding to the last successfully matched group in the
last pattern match.

Ruby Predefined Constants:
The following table lists all the Ruby's Predefined Constants.

NOTE: TRUE, FALSE, and NIL are backward-compatible. It's preferable to use true, false, and nil.

Constant Name Description

TRUE Synonym for true.

FALSE Synonym for false.

NIL Synonym for nil.

ARGF An object providing access to virtual concatenation of files passed as
command-line arguments or standard input if there are no command-
line arguments. A synonym for $<.

ARGV An array containing the command-line arguments passed to the
program. A synonym for $*.

DATA An input stream for reading the lines of code following the __END__
directive. Not defined if __END__ isn't present in code.

ENV A hash-like object containing the program's environment variables.
ENV can be handled as a hash.

RUBY_PLATFORM A string indicating the platform of the Ruby interpreter.

RUBY_RELEASE_DATE A string indicating the release date of the Ruby interpreter

RUBY_VERSION A string indicating the version of the Ruby interpreter.

STDERR Standard error output stream. Default value of $stderr.

STDIN Standard input stream. Default value of $stdin.

STDOUT Standard output stream. Default value of $stdout.

TOPLEVEL_BINDING A Binding object at Ruby's top level.

Regular Expressions:
Syntax:

/pattern/
/pattern/im # option can be specified
%r!/usr/local! # general delimited regular expression

Modifiers:

Modifier Description

i Ignore case when matching text.

o Perform #{} interpolations only once, the first time the regexp literal is
evaluated.

x Ignores whitespace and allows comments in regular expressions

m Matches multiple lines, recognizing newlines as normal characters

u,e,s,n Interpret the regexp as Unicode UTF − 8, EUC, SJIS, or ASCII. If none of
these modifiers is specified, the regular expression is assumed to use
the source encoding.

Various patterns:

Pattern Description

^ Matches beginning of line.

$ Matches end of line.

. Matches any single character except newline. Using m option allows it
to match newline as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding expression.

a| b Matches either a or b.

re Groups regular expressions and remembers matched text.

?imx Temporarily toggles on i, m, or x options within a regular expression. If
in parentheses, only that area is affected.

? − imx Temporarily toggles off i, m, or x options within a regular expression. If
in parentheses, only that area is affected.

? : re Groups regular expressions without remembering matched text.

?imx: re Temporarily toggles on i, m, or x options within parentheses.

? − imx: re Temporarily toggles off i, m, or x options within parentheses.

?#... Comment.

? = re Specifies position using a pattern. Doesn't have a range.

? !re Specifies position using pattern negation. Doesn't have a range.

? > re Matches independent pattern without backtracking.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before
newline.

\z Matches end of string.

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches backspace
0x08 when inside brackets.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriage returns, tabs, etc.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if it matched already. Otherwise
refers to the octal representation of a character code.

File I/O:
Common methods include:

File.joinp1, p2, . . . pN => "p1/p2/.../pN" platform independent paths

File.newpath, modestring="r" => file

File.newpath, modenum [, permnum] => file

File.openfileName, aModeString="r" {|file| block} -> nil

File.openfileName [, aModeNum [, aPermNum]] {|file| block} -> nil

IO.foreachpath, sepstring=$/ {|line| block}

IO.readlinespath => array

Here is a list of the different modes of opening a file:

Modes Description

r Read-only mode. The file pointer is placed at the beginning of the file. This is the
default mode.

r+ Read-write mode. The file pointer will be at the beginning of the file.

w Write-only mode. Overwrites the file if the file exists. If the file does not exist, creates a
new file for writing.

w+ Read-write mode. Overwrites the existing file if the file exists. If the file does not exist,
creates a new file for reading and writing.

a Write-only mode. The file pointer is at the end of the file if the file exists. That is, the
file is in the append mode. If the file does not exist, it creates a new file for writing.

a+ Read and write mode. The file pointer is at the end of the file if the file exists. The file
opens in the append mode. If the file does not exist, it creates a new file for reading
and writing.

Operators and Precedence:
Top to bottom:

:: .
[]
**
-(unary) +(unary) ! ~
* / %
+ -
<< >>
&
| ^
> >= < <=
<=> == === != =~ !~
&&
||
.. ...
=(+=, -=...)
not
and or

All of the above are just methods except these:

=, ::, ., .., ..., !, not, &&, and, ||, or, !=, !~

In addition, assignment operators+= etc. are not user-definable.

Control Expressions:

S.N. Control Expression

1

1 if bool-expr [then]
 body
elsif bool-expr [then]
 body
else
 body
end

2 unless bool-expr [then]
 body
else
 body
end

3 expr if bool-expr

4 expr unless bool-expr

5 case target-expr
 when comparison [, comparison]... [then]
 body
 when comparison [, comparison]... [then]
 body
 ...
[else
 body]
end

6 loop do
 body
end

7 while bool-expr [do]
 body
end

8 until bool-expr [do]
 body
end

9 begin
 body
end while bool-expr

10 begin
 body
end until bool-expr

11 for name[, name]... in expr [do]
 body
end

12 expr.each do | name[, name]... |

 body
end

13 expr while bool-expr

14 expr until bool-expr

break terminates loop immediately.

redo immediately repeats w/o rerunning the condition.

next starts the next iteration through the loop.

retry restarts the loop, rerunning the condition.

Defining a Class:
Class names begin w/ capital character.

class Identifier [< superclass]
 expr..
end

Singleton classes, add methods to a single instance

class << obj
 expr..
end

Defining a Module:
Following is the general syntax to define a module in ruby

module Identifier
 expr..
end

Defining a Method:
Following is the general syntax to define a method in ruby

def method_name(arg_list, *list_expr, &block_expr)
 expr..
end
singleton method
def expr.identifier(arg_list, *list_expr, &block_expr)
 expr..
end

All items of the arg list, including parens, are optional.

Arguments may have default values name=expr.

Method_name may be operators see above.

The method definitions can not be nested.

Methods may override following operators:

.., |, ^, &, <=>, ==, ===, =~,

>, >=, <, <=,
+, -, *, /, %, **, <<, >>,
~, +@, -@, [], []= 2 args

Access Restriction:
public - totally accessible.

protected - accessible only by instances of class and direct descendants. Even through hasA
relationships. see below

private - accessible only by instances of class must be called nekkid no "self." or anything
else.

Example:

class A
 protected
 def protected_method
 # nothing
 end
end
class B < A
 public
 def test_protected
 myA = A.new
 myA.protected_method
 end
end
b = B.new.test_protected

Raising and Rescuing Exceptions:
Following is the syntax:

raise ExceptionClass[, "message"]
begin
 expr..
[rescue [error_type [=> var],..]
 expr..]..
[else
 expr..]
[ensure
 expr..]
end

Catch and Throw Exceptions:
catch :label do ... end
throw :label jumps back to matching catch and terminates the block.
+ can be external to catch, but has to be reached via calling scope.
+ Hardly ever needed.

Exceptions Classes:
Following is the class hierarchy of Exception class:

Exception
NoMemoryError
ScriptError

LoadError

NotImplementedError
SyntaxError

SignalException
Interrupt

StandardError default for rescue
ArgumentError
IOError

EOFError
IndexError
LocalJumpError
NameError

NoMethodError
RangeError

FloatDomainError
RegexpError
RuntimeError default for raise
SecurityError
SystemCallError

Errno::*
SystemStackError
ThreadError
TypeError
ZeroDivisionError

SystemExit
fatal

Ruby Command Line Options:

$ ruby [options] [.] [programfile] [arguments ...]

The interpreter can be invoked with any of the following options to control the environment and
behavior of the interpreter.

Option Description

-a Used with -n or -p to split each line. Check -n and -p options.

-c Checks syntax only, without executing program.

-C dir Changes directory before executing equivalent to -X.

-d Enables debug mode equivalent to -debug.

-F pat Specifies pat as the default separator pattern $; used by split.

-e prog Specifies prog as the program from the command line. Specify multiple -e options
for multiline programs.

-h Displays an overview of command-line options.

-i [ext] Overwrites the file contents with program output. The original file is saved with the
extension ext. If ext isn't specified, the original file is deleted.

-I dir Adds dir as the directory for loading libraries.

-K [
kcode]

Specifies the multibyte character set code e or E for EUC (extended Unix code; s or
S for SJIS Shift-JIS; u or U for UTF-8; and a, A, n, or N for ASCII).

-l Enables automatic line-end processing. Chops a newline from input lines and
appends a newline to output lines.

-n Places code within an input loop as in while gets; ... end.

-0[octal] Sets default record separator $/ as an octal. Defaults to \0 if octal not specified.

-p Places code within an input loop. Writes $_ for each iteration.

-r lib Uses require to load lib as a library before executing.

-s Interprets any arguments between the program name and filename arguments
fitting the pattern -xxx as a switch and defines the corresponding variable.

-T [level] Sets the level for tainting checks 1 if level not specified.

-v Displays version and enables verbose mode

-w Enables verbose mode. If programfile not specified, reads from STDIN.

-x [dir] Strips text before #!ruby line. Changes directory to dir before executing if dir is
specified.

-X dir Changes directory before executing equivalent to -C.

-y Enables parser debug mode.

--
copyright

Displays copyright notice.

--debug Enables debug mode equivalent to -d.

--help Displays an overview of command-line options equivalent to -h.

--version Displays version.

--verbose Enables verbose mode equivalent to -v. Sets $VERBOSE to true

--
yydebug

Enables parser debug mode equivalent to -y.

Ruby Environment Variables:
Ruby interpreter uses the following environment variables to control its behavior. The ENV object
contains a list of all the current environment variables set.

Variable Description

DLN_LIBRARY_PATH Search path for dynamically loaded modules.

HOME Directory moved to when no argument is passed to Dir::chdir. Also used
by File::expand_path to expand "~".

LOGDIR Directory moved to when no arguments are passed to Dir::chdir and
environment variable HOME isn't set.

PATH Search path for executing subprocesses and searching for Ruby

programs with the -S option. Separate each path with a colon
semicolon in DOS and Windows.

RUBYLIB Search path for libraries. Separate each path with a colon semicolon in
DOS and Windows.

RUBYLIB_PREFIX Used to modify the RUBYLIB search path by replacing prefix of library
path1 with path2 using the format path1;path2 or path1path2.

RUBYOPT Command-line options passed to Ruby interpreter. Ignored in taint
mode Where $SAFE is greater than 0.

RUBYPATH With -S option, search path for Ruby programs. Takes precedence over
PATH. Ignored in taint mode where $SAFE is greater than 0.

RUBYSHELL Specifies shell for spawned processes. If not set, SHELL or COMSPEC are
checked.

Processing math: 57%

