RUBY MODULES AND MIXINS

Modules are a way of grouping together methods, classes, and constants. Modules give you two
major benefits.

e Modules provide a namespace and prevent name clashes.
¢ Modules implement the mixin facility.

Modules define a namespace, a sandbox in which your methods and constants can play without
having to worry about being stepped on by other methods and constants.

Syntax:

module Identifier
statementl
statement2

Module constants are named just like class constants, with an initial uppercase letter. The method
definitions look similar, too: Module methods are defined just like class methods.

As with class methods, you call a module method by preceding its name with the module's name
and a period, and you reference a constant using the module name and two colons.

Example:

#1/usr/bin/ruby
Module defined in trig.rb file

module Trig
PI = 3.141592654
def Trig.sin(x)
..
end
def Trig.cos(x)
.
end

end

We can define one more module with same function name but different functionality:

#!1/usr/bin/ruby
Module defined in moral.rb file

module Moral
VERY_BAD = 0

BAD = 1
def Moral.sin(badness)
.
end
end

Like class methods, whenever you define a method in a module, you specify the module name
followed by a dot and then the method name.

Ruby require Statement:

The require statement s similar to the include statement of C and C++ and the import statement

http://www.tutorialspoint.com/ruby/ruby_modules.htm

of Java. If a third program wants to use any defined module, it can simply load the module files
using the Ruby require statement:

Syntax:

require filename

Here, itis not required to give .rb extension along with a file name.
Example:

$LOAD_PATH << '.'

require 'trig.rb'
require 'moral'

y = Trig.sin(Trig::PI/4)
wrongdoing = Moral.sin(Moral::VERY_BAD)

Here we are using $LOAD_PATH << '.' to make Ruby aware that included files must be searched
in the current directory. If you do not want to use $LOAD_PATH then you can use require_relative
to include files from a relative directory.

IMPORTANT: Here, both the files contain same function name. So, this will resultin code
ambiguity while including in calling program but modules avoid this code ambiguity and we are
able to call appropriate function using module name.

Ruby include Statement:

You can embed a module in a class. To embed a module in a class, you use the include statement
in the class:

Syntax:

include modulename

If a module is defined in a separate file, then it is required to include that file using require
statement before embedding module in a class.

Example:

Consider following module written in support.rb file.

module Week
FIRST_DAY = "Sunday"
def Week.weeks_in_month
puts "You have four weeks in a month"
end
def Week.weeks_in_year
puts "You have 52 weeks in a year"
end
end

Now, you can include this module in a class as follows:

#!1/usr/bin/ruby
$LOAD_PATH << '.'
require "support"

class Decade
include Week
no_of_yrs=10
def no_of_months
puts Week::FIRST_DAY

number=10*12
puts number
end
end
dl=Decade.new
puts Week::FIRST_DAY
Week.weeks_in_month
Week.weeks_in_year
d1.no_of_months

This will produce the following result:

Sunday

You have four weeks in a month
You have 52 weeks in a year
Sunday

120

Mixins in Ruby:
Before going through this section, | assume you have knowledge of Object Oriented Concepts.

When a class can inherit features from more than one parent class, the class is supposed to show
multiple inheritance.

Ruby does not support multiple inheritance directly but Ruby Modules have another wonderful use.
At a stroke, they pretty much eliminate the need for multiple inheritance, providing a facility called
a mixin.

Mixins give you a wonderfully controlled way of adding functionality to classes. However, their true
power comes out when the code in the mixin starts to interact with code in the class that uses it.

Let us examine the following sample code to gain an understand of mixin:

module A
def al
end
def a2
end

end

module B
def b1
end
def b2
end

end

class Sample

include A

include B
def si
end

end

samp=Sample.new
samp.al
samp.a2
samp .b1
samp .b2
samp.sl

Module A consists of the methods al and a2. Module B consists of the methods b1l and b2. The
class Sample includes both modules A and B. The class Sample can access all four methods,
namely, al, a2, bl, and b2. Therefore, you can see that the class Sample inherits from both the
modules. Thus, you can say the class Sample shows multiple inheritance or a mixin.

