
http://www.tutorialspoint.com/ruby/ruby_hashes.htm Copyright © tutorialspoint.com

RUBY HASHESRUBY HASHES

A Hash is a collection of key-value pairs like this: "employee" => "salary". It is similar to an Array,
except that indexing is done via arbitrary keys of any object type, not an integer index.

The order in which you traverse a hash by either key or value may seem arbitrary and will
generally not be in the insertion order. If you attempt to access a hash with a key that does not
exist, the method will return nil.

Creating Hashes:
As with arrays, there is a variety of ways to create hashes. You can create an empty hash with the
new class method:

months = Hash.new

You can also use new to create a hash with a default value, which is otherwise just nil:

months = Hash.new("month")

or

months = Hash.new "month"

When you access any key in a hash that has a default value, if the key or value doesn't exist,
accessing the hash will return the default value:

#!/usr/bin/ruby

months = Hash.new("month")

puts "#{months[0]}"
puts "#{months[72]}"

This will produce the following result:

month
month

#!/usr/bin/ruby

H = Hash["a" => 100, "b" => 200]

puts "#{H['a']}"
puts "#{H['b']}"

This will produce the following result:

100
200

You can use any Ruby object as a key or value, even an array, so following example is a valid one:

[1,"jan"] => "January"

Hash Built-in Methods:
We need to have an instance of Hash object to call a Hash method. As we have seen, following is
the way to create an instance of Hash object:

http://www.tutorialspoint.com/ruby/ruby_hashes.htm

Hash[[key =>|, value]*] or

Hash.new [or] Hash.new(obj) [or]

Hash.new { |hash, key| block }

This will return a new hash populated with the given objects. Now using created object we can call
any available instance methods. For example:

#!/usr/bin/ruby

$, = ", "
months = Hash.new("month")

months = {"1" => "January", "2" => "February"}

keys = months.keys

puts "#{keys}"

This will produce the following result:

["1", "2"]

Following are the public hash methods (assuming hash is an array object):

SN Methods with Description

1 hash == other_hash

Tests whether two hashes are equal, based on whether they have the same number of
key-value pairs, and whether the key-value pairs match the corresponding pair in each
hash.

2 hash.[key]

Using a key, references a value from hash. If the key is not found, returns a default value.

3 hash.[key]=value

Associates the value given by value with the key given by key.

4 hash.clear

Removes all key-value pairs from hash.

5 hash.defaultkey = nil

Returns the default value for hash, nil if not set by default=. ([] returns a default value if
the key does not exist in hash.)

6 hash.default = obj

Sets a default value for hash.

7 hash.default_proc

Returns a block if hash was created by a block.

8
hash.deletekey [or]

array.deletekey { |key| block }

Deletes a key-value pair from hash by key. If block is used, returns the result of a block if
pair is not found. Compare delete_if.

9 hash.delete_if { |key,value| block }

Deletes a key-value pair from hash for every pair the block evaluates to true.

10 hash.each { |key,value| block }

Iterates over hash, calling the block once for each key, passing the key-value as a two-
element array.

11 hash.each_key { |key| block }

Iterates over hash, calling the block once for each key, passing key as a parameter.

12 hash.each_key { |key_value_array| block }

Iterates over hash, calling the block once for each key, passing the key and value as
parameters.

13 hash.each_key { |value| block }

Iterates over hash, calling the block once for each key, passing value as a parameter.

14 hash.empty?

Tests whether hash is empty containsnokey − valuepairs, returning true or false.

15
hash.fetchkey[, default] [or]

hash.fetchkey { | key | block }

Returns a value from hash for the given key. If the key can't be found, and there are no
other arguments, it raises an IndexError exception; if default is given, it is returned; if the
optional block is specified, its result is returned.

16
hash.has_key?key [or] hash.include?key [or]

hash.key?key [or] hash.member?key

Tests whether a given key is present in hash, returning true or false.

17 hash.has_value?value

Tests whether hash contains the given value.

18 hash.indexvalue

Returns the key for the given value in hash, nil if no matching value is found.

19 hash.indexeskeys

Returns a new array consisting of values for the given keys. Will insert the default value for
keys that are not found. This method is deprecated. Use select.

20 hash.indiceskeys

Returns a new array consisting of values for the given keys. Will insert the default value for
keys that are not found. This method is deprecated. Use select.

21 hash.inspect

Returns a pretty print string version of hash.

22 hash.invert

Creates a new hash, inverting keys and values from hash; that is, in the new hash, the keys
from hash become values and values become keys.

23 hash.keys

Creates a new array with keys from hash.

24 hash.length

Returns the size or length of hash as an integer.

25
hash.mergeotherhash [or]

hash.mergeotherhash { |key, oldval, newval| block }

Returns a new hash containing the contents of hash and other_hash, overwriting pairs in
hash with duplicate keys with those from other_hash.

26
hash.merge!otherhash [or]

hash.merge!otherhash { |key, oldval, newval| block }

Same as merge, but changes are done in place.

27 hash.rehash

Rebuilds hash based on the current values for each key. If values have changed since they
were inserted, this method reindexes hash.

28 hash.reject { |key, value| block }

Creates a new hash for every pair the block evaluates to true

29 hash.reject! { |key, value| block }

Same as reject, but changes are made in place.

30 hash.replaceotherhash

Replaces the contents of hash with the contents of other_hash.

31 hash.select { |key, value| block }

Returns a new array consisting of key-value pairs from hash for which the block returns
true.

32 hash.shift

Removes a key-value pair from hash, returning it as a two-element array.

33 hash.size

Returns the size or length of hash as an integer.

34 hash.sort

Converts hash to a two-dimensional array containing arrays of key-value pairs, then sorts
it as an array.

35 hash.storekey, value

Stores a key-value pair in hash.

36 hash.to_a

Creates a two-dimensional array from hash. Each key/value pair is converted to an array,
and all these arrays are stored in a containing array.

37 hash.to_hash

Returns hash self.

38 hash.to_s

Converts hash to an array, then converts that array to a string.

39
hash.updateotherhash [or]

hash.updateotherhash {|key, oldval, newval| block}

Returns a new hash containing the contents of hash and other_hash, overwriting pairs in
hash with duplicate keys with those from other_hash.

40 hash.value?value

Tests whether hash contains the given value.

41 hash.values

Returns a new array containing all the values of hash.

42 hash.values_atobj, . . .

Returns a new array containing the values from hash that are associated with the given

key or keys.

Processing math: 100%

