
RESTful Web Services

 i

RESTful Web Services

 i

About the Tutorial

RESTful Web Services are basically REST Architecture based Web Services. In REST

Architecture everything is a resource. RESTful web services are light weight, highly

scalable and maintainable and are very commonly used to create APIs for web-based

applications.

This tutorial will teach you the basics of RESTful Web Services and contains chapters

discussing all the basic components of RESTful Web Services with suitable examples.

Audience

This tutorial is designed for Software Professionals who are willing to learn RESTful Web

Services in simple and easy steps. This tutorial will give you great understanding on

RESTful Web Services concepts and after completing this tutorial you will be at

intermediate level of expertise from where you can take yourself at higher level of

expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of Java

Language, Text Editor, etc. Because we are going to develop web services applications

using RESTful, so it will be good if you have understanding on other web technologies like

HTML, CSS, AJAX, etc.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

RESTful Web Services

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. RESTFUL WEB SERVICES – INTRODUCTION .. 1

What is REST? ... 1

RESTFul Web Services ... 1

Creating RESTFul Web Service ... 1

2. RESTFUL WEB SERVICES – ENVIRONMENT SETUP ... 3

Setup Java Development Kit (JDK) ... 3

Setup Eclipse IDE ... 3

Setup Jersey Framework Libraries ... 4

Setup Apache Tomcat ... 5

3. RESTFUL WEB SERVICES – FIRST APPLICATION .. 7

Creating a Java Project .. 7

Creating the Source Files ... 9

Creating the Web.xml configuration File ... 13

4. RESTFUL WEB SERVICES – RESOURCES .. 16

What is a Resource? .. 16

5. RESTFUL WEB SERVICES – MESSAGES.. 18

6. RESTFUL WEB SERVICES – ADDRESSING .. 21

RESTful Web Services

 iii

7. RESTFUL WEB SERVICES – METHODS .. 22

Testing the Web Service .. 31

8. RESTFUL WEB SERVICES – STATELESSNESS .. 35

9. RESTFUL WEB SERVICES – CACHING .. 36

10. RESTFUL WEB SERVICES – SECURITY .. 38

11. RESTFUL WEB SERVICES – JAVA (JAX-RS) ... 40

Specifications .. 40

RESTful Web Services

 1

What is REST?

REST stands for REpresentational State Transfer. REST is a web standards based

architecture and uses HTTP Protocol for data communication. It revolves around resources

where every component is a resource and a resource is accessed by a common interface

using HTTP standard methods. REST was first introduced by Roy Fielding in year 2000.

In REST architecture, a REST Server simply provides access to resources and the REST

client accesses and presents the resources. Here each resource is identified by URIs/

Global IDs. REST uses various representations to represent a resource like Text, JSON and

XML. JSON is now the most popular format being used in Web Services.

HTTP Methods

The following HTTP methods are most commonly used in a REST based architecture.

 GET - Provides a read only access to a resource.

 PUT - Used to create a new resource.

 DELETE - Used to remove a resource.

 POST - Used to update an existing resource or create a new resource.

 OPTIONS - Used to get the supported operations on a resource.

RESTFul Web Services

A web service is a collection of open protocols and standards used for exchanging data

between applications or systems. Software applications written in various programming

languages and running on various platforms can use web services to exchange data over

computer networks like the Internet in a manner similar to inter-process communication

on a single computer. This interoperability (e.g., between Java and Python, or Windows

and Linux applications) is due to the use of open standards.

Web services based on REST Architecture are known as RESTful Web Services. These web

services use HTTP methods to implement the concept of REST architecture. A RESTful web

service usually defines a URI (Uniform Resource Identifier), which is a service that provides

resource representation such as JSON and a set of HTTP Methods.

Creating RESTFul Web Service

In this tutorial, we will create a web service called User Management with the following

functionalities:

1. RESTful Web Services – Introduction

RESTful Web Services

 2

Sr.

No.

HTTP

Method
URI Operation Operation Type

1 GET /UserService/users Get list of users Read Only

2 GET /UserService/users/1 Get User with Id 1 Read Only

3 PUT /UserService/users/2 Insert User with Id 2 Idempotent

4 POST /UserService/users/2 Update User with Id 2 N/A

5 DELETE /UserService/users/1 Delete User with Id 1 Idempotent

6 OPTIONS /UserService/users

List the supported

operations in web

service

Read Only

RESTful Web Services

 3

This tutorial will guide you on how to prepare a development environment to start your

work with Jersey Framework to create RESTful Web Services. Jersey framework

implements JAX-RS 2.0 API, which is a standard specification to create RESTful Web

Services. This tutorial will also teach you how to setup JDK, Tomcat and Eclipse on your

machine before you the Jersey Framework is setup.

Setup Java Development Kit (JDK)

You can download the latest version of SDK from Oracle's Java site: Java SE Downloads.

You will find the instructions for installing JDK in the downloaded files. Follow the given

instructions to install and configure the setup. Finally set the PATH and JAVA_HOME

environment variables to refer to the directory that contains Java and Javac, typically

java_install_dir/bin and java_install_dir respectively.

If you are running Windows and installed the JDK in C:\jdk1.7.0_75, you would have to

put the following line in your C:\autoexec.bat file.

set PATH=C:\jdk1.7.0_75\bin;%PATH%

set JAVA_HOME=C:\jdk1.7.0_75

Alternatively, on Windows NT/2000/XP, you could also right-click on My Computer  select

Properties  then Advanced  then Environment Variables. Then, you would update the

PATH value and press the OK button.

On Unix (Solaris, Linux, etc.), if the SDK is installed in /usr/local/jdk1.7.0_75 and you use

the C Shell, you would put the following into your .cshrc file.

setenv PATH /usr/local/jdk1.7.0_75/bin:$PATH

setenv JAVA_HOME /usr/local/jdk1.7.0_75

Alternatively, if you use an Integrated Development Environment (IDE) like Borland

JBuilder, Eclipse, IntelliJ IDEA, or Sun ONE Studio, compile and run a simple program to

confirm that the IDE knows where you installed Java, otherwise do proper setup as given

document of the IDE.

Setup Eclipse IDE

All the examples in this tutorial have been written using the Eclipse IDE. So, I would

suggest you should have the latest version of Eclipse installed on your machine.

To install Eclipse IDE, download the latest Eclipse binaries

from http://www.eclipse.org/downloads/. Once you downloaded the installation, unpack

the binary distribution to a convenient location. For example, in C:\eclipse on windows, or

/usr/local/eclipse on Linux/Unix and finally set the PATH variable appropriately.

Eclipse can be started by executing the following commands on a windows machine, or

you can simply double click on eclipse.exe

2. RESTful Web Services – Environment Setup

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/

RESTful Web Services

 4

 %C:\eclipse\eclipse.exe

Eclipse can be started by executing the following commands on Unix (Solaris, Linux, etc.)

machine:

$/usr/local/eclipse/eclipse

After a successful startup, if everything is fine, then your screen should display the

following result:

Setup Jersey Framework Libraries

Now, if everything is fine, then you can proceed to setup the Jersey framework. Following

are a few simple steps to download and install the framework on your machine.

 Make a choice whether you want to install Jersey on Windows, or Unix and then

proceed to the next step to download the .zip file for windows and then the .tz file

for Unix.

 Download the latest version of Jersey framework binaries from the following link –

https://jersey.java.net/download.html.

 At the time of writing this tutorial, I downloaded jaxrs-ri-2.17.zip on my Windows

machine and when you unzip the downloaded file it will give you the directory

structure inside E:\jaxrs-ri-2.17\jaxrs-ri as shown in the following screenshot.

https://jersey.java.net/download.html

RESTful Web Services

 5

You will find all the Jersey libraries in the directories C:\jaxrs-ri-2.17\jaxrs-ri\lib and

dependencies in C:\jaxrs-ri-2.17\jaxrs-ri\ext. Make sure you set your CLASSPATH

variable on this directory properly otherwise you will face problem while running your

application. If you are using Eclipse, then it is not required to set the CLASSPATH because

all the settings will be done through Eclipse.

Setup Apache Tomcat

You can download the latest version of Tomcat from http://tomcat.apache.org/. Once you

downloaded the installation, unpack the binary distribution into a convenient location. For

example in C:\apache-tomcat-7.0.59 on windows, or /usr/local/apache-tomcat-7.0.59 on

Linux/Unix and set CATALINA_HOME environment variable pointing to the installation

locations.

Tomcat can be started by executing the following commands on a windows machine, or

you can simply double click on startup.bat.

 %CATALINA_HOME%\bin\startup.bat

or

 C:\apache-tomcat-7.0.59\bin\startup.bat

Tomcat can be started by executing the following commands on a Unix (Solaris, Linux,

etc.) machine:

$CATALINA_HOME/bin/startup.sh

or

/usr/local/apache-tomcat-7.0.59/bin/startup.sh

After a successful startup, the default web applications included with Tomcat will be

available by visiting http://localhost:8080/. If everything is fine then it should display

the following result:

http://tomcat.apache.org/

RESTful Web Services

 6

Further information about configuring and running Tomcat can be found in the

documentation included on this page. This information can also be found on the Tomcat

website: http://tomcat.apache.org.

Tomcat can be stopped by executing the following commands on a windows machine:

%CATALINA_HOME%\bin\shutdown

or

C:\apache-tomcat-7.0.59\bin\shutdown

Tomcat can be stopped by executing the following commands on Unix (Solaris, Linux, etc.)

machine:

$CATALINA_HOME/bin/shutdown.sh

or

/usr/local/apache-tomcat-7.0.59/bin/shutdown.sh

Once you are done with this last step, you are ready to proceed for your first Jersey

example which you will see in the next chapter.

http://tomcat.apache.org/

RESTful Web Services

 7

Let us start writing the actual RESTful web services with Jersey Framework. Before you

start writing your first example using the Jersey Framework, you have to make sure that

you have setup your Jersey environment properly as explained in the RESTful Web

Services - Environment Setup chapter. Here, I am also assuming that you have a little

working knowledge of Eclipse IDE.

So, let us proceed to write a simple Jersey Application which will expose a web service

method to display the list of users.

Creating a Java Project

The first step is to create a Dynamic Web Project using Eclipse IDE. Follow the option File

 New  Project and finally select the Dynamic Web Project wizard from the wizard

list. Now name your project as UserManagement using the wizard window as shown in

the following screenshot:

3. RESTful Web Services – First Application

https://www.tutorialspoint.com/restful/restful_environment.htm
https://www.tutorialspoint.com/restful/restful_environment.htm

RESTful Web Services

 8

RESTful Web Services

 9

Once your project is created successfully, you will have the following content in

your Project Explorer:

Adding the Required Libraries

As a second step let us add Jersey Framework and its dependencies (libraries) in our

project. Copy all jars from following directories of download jersey zip folder in WEB-INF/lib

directory of the project.

 \jaxrs-ri-2.17\jaxrs-ri\api

 \jaxrs-ri-2.17\jaxrs-ri\ext

 \jaxrs-ri-2.17\jaxrs-ri\lib

Now, right click on your project name UserManagement and then follow the option

available in context menu: Build Path  Configure Build Path to display the Java Build

Path window.

Now use Add JARs button available under Libraries tab to add the JARs present in WEB-

INF/lib directory.

Creating the Source Files

Now let us create the actual source files under the UserManagement project. First we

need to create a package called com.tutorialspoint. To do this, right click on src in

package explorer section and follow the option: New  Package.

Next we will create UserService.java, User.java,UserDao.java files under the

com.tutorialspoint package.

RESTful Web Services

 10

User.java

package com.tutorialspoint;

import java.io.Serializable;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "user")

public class User implements Serializable {

 private static final long serialVersionUID = 1L;

 private int id;

 private String name;

 private String profession;

 public User(){}

 public User(int id, String name, String profession){

 this.id = id;

 this.name = name;

 this.profession = profession;

 }

 public int getId() {

 return id;

 }

 @XmlElement

 public void setId(int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 @XmlElement

RESTful Web Services

 11

 public void setName(String name) {

 this.name = name;

 }

 public String getProfession() {

 return profession;

 }

 @XmlElement

 public void setProfession(String profession) {

 this.profession = profession;

 }

}

UserDao.java

package com.tutorialspoint;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.util.ArrayList;

import java.util.List;

public class UserDao {

 public List<User> getAllUsers(){

 List<User> userList = null;

 try {

 File file = new File("Users.dat");

 if (!file.exists()) {

 User user = new User(1, "Mahesh", "Teacher");

 userList = new ArrayList<User>();

 userList.add(user);

 saveUserList(userList);

RESTful Web Services

 12

 }

 else{

 FileInputStream fis = new FileInputStream(file);

 ObjectInputStream ois = new ObjectInputStream(fis);

 userList = (List<User>) ois.readObject();

 ois.close();

 }

 } catch (IOException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 return userList;

 }

 private void saveUserList(List<User> userList){

 try {

 File file = new File("Users.dat");

 FileOutputStream fos;

 fos = new FileOutputStream(file);

 ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeObject(userList);

 oos.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

UserService.java

package com.tutorialspoint;

import java.util.List;

RESTful Web Services

 13

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/UserService")

public class UserService {

 UserDao userDao = new UserDao();

 @GET

 @Path("/users")

 @Produces(MediaType.APPLICATION_XML)

 public List<User> getUsers(){

 return userDao.getAllUsers();

 }

}

There are two important points to be noted about the main program,

UserService.java

 The first step is to specify a path for the web service using @Path annotation to the

UserService.

 The second step is to specify a path for the particular web service method using

@Path annotation to method of UserService.

Creating the Web.xml configuration File

You need to create a Web xml Configuration file which is an XML file and is used to specify

Jersey framework servlet for our application.

web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 id="WebApp_ID" version="3.0">

 <display-name>User Management</display-name>

RESTful Web Services

 14

 <servlet>

 <servlet-name>Jersey RESTful Application</servlet-name>

 <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-

class>

 <init-param>

 <param-name>jersey.config.server.provider.packages</param-name>

 <param-value>com.tutorialspoint</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>Jersey RESTful Application</servlet-name>

 <url-pattern>/rest/*</url-pattern>

 </servlet-mapping>

</web-app>

Deploying the Program

Once you are done with creating source and web configuration files, you are ready for this

step which is compiling and running your program. To do this, using Eclipse, export your

application as a war file and deploy the same in tomcat.

To create a WAR file using eclipse, follow the option File  export  Web  War File and

finally select project UserManagement and destination folder. To deploy a war file in

Tomcat, place the UserManagement.war in the Tomcat Installation Directory 

webapps directory and start the Tomcat.

Running the Program

We are using Postman, a Chrome extension, to test our webservices.

Make a request to UserManagement to get list of all the users. Put

http://localhost:8080/UserManagement/rest/UserService/users in POSTMAN with GET

request and see the following result.

http://www.getpostman.com/

RESTful Web Services

 15

Congratulations, you have created your first RESTful Application successfully.

RESTful Web Services

 16

What is a Resource?

REST architecture treats every content as a resource. These resources can be Text Files,

Html Pages, Images, Videos or Dynamic Business Data. REST Server simply provides

access to resources and REST client accesses and modifies the resources. Here each

resource is identified by URIs/ Global IDs. REST uses various representations to represent

a resource where Text, JSON, XML. The most popular representations of resources are

XML and JSON.

Representation of Resources

A resource in REST is a similar Object in Object Oriented Programming or is like an Entity

in a Database. Once a resource is identified then its representation is to be decided using

a standard format so that the server can send the resource in the above said format and

client can understand the same format.

For example, in RESTful Web Services - First Application chapter, a user is a resource

which is represented using the following XML format:

<user>

 <id>1</id>

 <name>Mahesh</name>

 <profession>Teacher</profession>

</user>

The same resource can be represented in JSON format as follows:

{

 "id":1,

 "name":"Mahesh",

 "profession":"Teacher"

}

Good Resources Representation

REST does not impose any restriction on the format of a resource representation. A client

can ask for JSON representation whereas another client may ask for XML representation

of the same resource to the server and so on. It is the responsibility of the REST server to

pass the client the resource in the format that the client understands.

Following are some important points to be considered while designing a representation

format of a resource in RESTful Web Services.

 Understandability: Both the Server and the Client should be able to understand

and utilize the representation format of the resource.

4. RESTful Web Services – Resources

https://www.tutorialspoint.com/restful/restful_first_application.htm

RESTful Web Services

 17

 Completeness: Format should be able to represent a resource completely. For

example, a resource can contain another resource. Format should be able to

represent simple as well as complex structures of resources.

 Linkablity: A resource can have a linkage to another resource, a format should be

able to handle such situations.

However, at present most of the web services are representing resources using either XML

or JSON format. There are plenty of libraries and tools available to understand, parse, and

modify XML and JSON data.

RESTful Web Services

 18

RESTful Web Services make use of HTTP protocols as a medium of communication between

client and server. A client sends a message in form of a HTTP Request and the server

responds in the form of an HTTP Response. This technique is termed as Messaging. These

messages contain message data and metadata i.e. information about message itself. Let

us have a look on the HTTP Request and HTTP Response messages for HTTP 1.1.

HTTP Request

An HTTP Request has five major parts:

 Verb – Indicates the HTTP methods such as GET, POST, DELETE, PUT, etc.

 URI – Uniform Resource Identifier (URI) to identify the resource on the server.

 HTTP Version – Indicates the HTTP version. For example, HTTP v1.1.

 Request Header – Contains metadata for the HTTP Request message as key-value

pairs. For example, client (or browser) type, format supported by the client, format

of the message body, cache settings, etc.

 Request Body – Message content or Resource representation.

5. RESTful Web Services – Messages

RESTful Web Services

 19

HTTP Response

An HTTP Response has four major parts:

 Status/Response Code – Indicates the Server status for the requested resource.

For example, 404 means resource not found and 200 means response is ok.

 HTTP Version – Indicates the HTTP version. For example HTTP v1.1.

 Response Header – Contains metadata for the HTTP Response message as key-

value pairs. For example, content length, content type, response date, server type,

etc.

 Response Body – Response message content or Resource representation.

Example

As we have explained in the RESTful Web Services - First Application chapter, let us put

http://localhost:8080/UserManagement/rest/UserService/users in the POSTMAN with a

GET request. If you click on the Preview button which is near the send button of Postman

and then click on the Send button, you may see the following output.

https://www.tutorialspoint.com/restful/restful_first_application.htm

RESTful Web Services

 20

Here you can see, the browser sent a GET request and received a response body as XML.

RESTful Web Services

 21

Addressing refers to locating a resource or multiple resources lying on the server. It is

analogous to locate a postal address of a person.

Each resource in REST architecture is identified by its URI (Uniform Resource Identifier).

A URI is of the following format:

<protocol>://<service-name>/<ResourceType>/<ResourceID>

Purpose of an URI is to locate a resource(s) on the server hosting the web service. Another

important attribute of a request is VERB which identifies the operation to be performed on

the resource. For example, in RESTful Web Services - First Application chapter, the URI

is http://localhost:8080/UserManagement/rest/UserService/users and the

VERB is GET.

Constructing a Standard URI

The following are important points to be considered while designing a URI:

 Use Plural Noun – Use plural noun to define resources. For example, we've

used users to identify users as a resource.

 Avoid using spaces – Use underscore (_) or hyphen (-) when using a long

resource name. For example, use authorized_users instead of

authorized%20users.

 Use lowercase letters – Although URI is case-insensitive, it is a good practice to

keep the url in lower case letters only.

 Maintain Backward Compatibility – As Web Service is a public service, a URI

once made public should always be available. In case, URI gets updated, redirect

the older URI to a new URI using the HTTP Status code, 300.

 Use HTTP Verb – Always use HTTP Verb like GET, PUT and DELETE to do the

operations on the resource. It is not good to use operations name in the URI.

Example

Following is an example of a poor URI to fetch a user.

http://localhost:8080/UserManagement/rest/UserService/getUser/1

Following is an example of a good URI to fetch a user.

http://localhost:8080/UserManagement/rest/UserService/users/1

6. RESTful Web Services – Addressing

https://www.tutorialspoint.com/restful/restful_first_application.htm

RESTful Web Services

 22

As we have discussed in the earlier chapters that RESTful Web Service uses a lot of HTTP

verbs to determine the operation to be carried out on the specified resource(s). The

following table states the examples of the most commonly used HTTP Verbs.

S.No. HTTP Method, URI and Operation

1

GET

http://localhost:8080/UserManagement/rest/UserService/users

Gets the list of users.

(Read Only)

2

GET

http://localhost:8080/UserManagement/rest/UserService/users/1

Gets the User of Id 1

(Read Only)

3

PUT

http://localhost:8080/UserManagement/rest/UserService/users/2

Inserts User with Id 2

(Idempotent)

4

POST

http://localhost:8080/UserManagement/rest/UserService/users/2

Updates the User with Id 2

(N/A)

5

DELETE

http://localhost:8080/UserManagement/rest/UserService/users/1

Deletes the User with Id 1

(Idempotent)

6

OPTIONS

http://localhost:8080/UserManagement/rest/UserService/users

Lists out the supported operations in a web service.

(Read Only)

7

HEAD

http://localhost:8080/UserManagement/rest/UserService/users

Returns the HTTP Header only, no Body.

(Read Only)

7. RESTful Web Services – Methods

RESTful Web Services

 23

The following points are to be considered.

 GET operations are read only and are safe.

 PUT and DELETE operations are idempotent, which means their result will always

be the same, no matter how many times these operations are invoked.

 PUT and POST operation are nearly the same with the difference lying only in the

result where the PUT operation is idempotent and POST operation can cause a

different result.

Example

Let us update an Example created in the RESTful Web Services - First Application chapter

to create a Web service which can perform CRUD (Create, Read, Update, Delete)

operations. For simplicity, we have used a file I/O to replace Database operations.

Let us update the User.java, UserDao.java and UserService.java files under the

com.tutorialspoint package.

User.java

package com.tutorialspoint;

import java.io.Serializable;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "user")

public class User implements Serializable {

 private static final long serialVersionUID = 1L;

 private int id;

 private String name;

 private String profession;

 public User(){}

 public User(int id, String name, String profession){

 this.id = id;

 this.name = name;

 this.profession = profession;

 }

public int getId() {

https://www.tutorialspoint.com/restful/restful_first_application.htm

RESTful Web Services

 24

 return id;

 }

 @XmlElement

 public void setId(int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 @XmlElement

 public void setName(String name) {

 this.name = name;

 }

 public String getProfession() {

 return profession;

 }

 @XmlElement

 public void setProfession(String profession) {

 this.profession = profession;

 }

 @Override

 public boolean equals(Object object){

 if(object == null){

 return false;

 }else if(!(object instanceof User)){

 return false;

 }else {

 User user = (User)object;

 if(id == user.getId()

 && name.equals(user.getName())

 && profession.equals(user.getProfession())

){

 return true;

 }

RESTful Web Services

 25

 }

 return false;

 }

}

UserDao.java

package com.tutorialspoint;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.util.ArrayList;

import java.util.List;

public class UserDao {

 public List<User> getAllUsers(){

 List<User> userList = null;

 try {

 File file = new File("Users.dat");

 if (!file.exists()) {

 User user = new User(1, "Mahesh", "Teacher");

 userList = new ArrayList<User>();

 userList.add(user);

 saveUserList(userList);

 }

 else{

 FileInputStream fis = new FileInputStream(file);

 ObjectInputStream ois = new ObjectInputStream(fis);

 userList = (List<User>) ois.readObject();

 ois.close();

 }

RESTful Web Services

 26

 } catch (IOException e) {

 e.printStackTrace();

 } catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 return userList;

 }

 public User getUser(int id){

 List<User> users = getAllUsers();

 for(User user: users){

 if(user.getId() == id){

 return user;

 }

 }

 return null;

 }

 public int addUser(User pUser){

 List<User> userList = getAllUsers();

 boolean userExists = false;

 for(User user: userList){

 if(user.getId() == pUser.getId()){

 userExists = true;

 break;

 }

 }

 if(!userExists){

 userList.add(pUser);

 saveUserList(userList);

 return 1;

 }

 return 0;

 }

RESTful Web Services

 27

 public int updateUser(User pUser){

 List<User> userList = getAllUsers();

 for(User user: userList){

 if(user.getId() == pUser.getId()){

 int index = userList.indexOf(user);

 userList.set(index, pUser);

 saveUserList(userList);

 return 1;

 }

 }

 return 0;

 }

 public int deleteUser(int id){

 List<User> userList = getAllUsers();

 for(User user: userList){

 if(user.getId() == id){

 int index = userList.indexOf(user);

 userList.remove(index);

 saveUserList(userList);

 return 1;

 }

 }

 return 0;

 }

 private void saveUserList(List<User> userList){

 try {

 File file = new File("Users.dat");

 FileOutputStream fos;

 fos = new FileOutputStream(file);

RESTful Web Services

 28

 ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeObject(userList);

 oos.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

UserService.java

package com.tutorialspoint;

import java.io.IOException;

import java.util.List;

import javax.servlet.http.HttpServletResponse;

import javax.ws.rs.Consumes;

import javax.ws.rs.DELETE;

import javax.ws.rs.FormParam;

import javax.ws.rs.GET;

import javax.ws.rs.OPTIONS;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.core.Context;

import javax.ws.rs.core.MediaType;

@Path("/UserService")

public class UserService {

 UserDao userDao = new UserDao();

RESTful Web Services

 29

 private static final String SUCCESS_RESULT="<result>success</result>";

 private static final String FAILURE_RESULT="<result>failure</result>";

 @GET

 @Path("/users")

 @Produces(MediaType.APPLICATION_XML)

 public List<User> getUsers(){

 return userDao.getAllUsers();

 }

 @GET

 @Path("/users/{userid}")

 @Produces(MediaType.APPLICATION_XML)

 public User getUser(@PathParam("userid") int userid){

 return userDao.getUser(userid);

 }

 @PUT

 @Path("/users")

 @Produces(MediaType.APPLICATION_XML)

 @Consumes(MediaType.APPLICATION_FORM_URLENCODED)

 public String createUser(@FormParam("id") int id,

 @FormParam("name") String name,

 @FormParam("profession") String profession,

 @Context HttpServletResponse servletResponse) throws IOException{

 User user = new User(id, name, profession);

 int result = userDao.addUser(user);

 if(result == 1){

 return SUCCESS_RESULT;

 }

 return FAILURE_RESULT;

 }

 @POST

 @Path("/users")

 @Produces(MediaType.APPLICATION_XML)

RESTful Web Services

 30

 @Consumes(MediaType.APPLICATION_FORM_URLENCODED)

 public String updateUser(@FormParam("id") int id,

 @FormParam("name") String name,

 @FormParam("profession") String profession,

 @Context HttpServletResponse servletResponse) throws IOException{

 User user = new User(id, name, profession);

 int result = userDao.updateUser(user);

 if(result == 1){

 return SUCCESS_RESULT;

 }

 return FAILURE_RESULT;

 }

 @DELETE

 @Path("/users/{userid}")

 @Produces(MediaType.APPLICATION_XML)

 public String deleteUser(@PathParam("userid") int userid){

 int result = userDao.deleteUser(userid);

 if(result == 1){

 return SUCCESS_RESULT;

 }

 return FAILURE_RESULT;

 }

 @OPTIONS

 @Path("/users")

 @Produces(MediaType.APPLICATION_XML)

 public String getSupportedOperations(){

 return "<operations>GET, PUT, POST, DELETE</operations>";

 }

}

Now using Eclipse, export your application as a WAR File and deploy the same in Tomcat.

To create a WAR file using eclipse, follow this path – File  export  Web  War

File and finally select project UserManagement and the destination folder. To deploy a

WAR file in Tomcat, place the UserManagement.war in the Tomcat Installation

Directory  webapps directory and the start Tomcat.

RESTful Web Services

 31

Testing the Web Service

Jersey provides APIs to create a Web Service Client to test web services. We have created

a sample test class WebServiceTester.java under the com.tutorialspoint package in the

same project.

WebServiceTester.java

package com.tutorialspoint;

import java.util.List;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;

import javax.ws.rs.client.Entity;

import javax.ws.rs.core.Form;

import javax.ws.rs.core.GenericType;

import javax.ws.rs.core.MediaType;

public class WebServiceTester {

 private Client client;

 private String REST_SERVICE_URL =

"http://localhost:8080/UserManagement/rest/UserService/users";

 private static final String SUCCESS_RESULT="<result>success</result>";

 private static final String PASS = "pass";

 private static final String FAIL = "fail";

 private void init(){

 this.client = ClientBuilder.newClient();

 }

 public static void main(String[] args){

 WebServiceTester tester = new WebServiceTester();

 //initialize the tester

 tester.init();

 //test get all users Web Service Method

 tester.testGetAllUsers();

 //test get user Web Service Method

 tester.testGetUser();

RESTful Web Services

 32

 //test update user Web Service Method

 tester.testUpdateUser();

 //test add user Web Service Method

 tester.testAddUser();

 //test delete user Web Service Method

 tester.testDeleteUser();

 }

 //Test: Get list of all users

 //Test: Check if list is not empty

 private void testGetAllUsers(){

 GenericType<List<User>> list = new GenericType<List<User>>() {};

 List<User> users = client

 .target(REST_SERVICE_URL)

 .request(MediaType.APPLICATION_XML)

 .get(list);

 String result = PASS;

 if(users.isEmpty()){

 result = FAIL;

 }

 System.out.println("Test case name: testGetAllUsers, Result: " + result

);

 }

 //Test: Get User of id 1

 //Test: Check if user is same as sample user

 private void testGetUser(){

 User sampleUser = new User();

 sampleUser.setId(1);

 User user = client

 .target(REST_SERVICE_URL)

 .path("/{userid}")

 .resolveTemplate("userid", 1)

 .request(MediaType.APPLICATION_XML)

 .get(User.class);

 String result = FAIL;

 if(sampleUser != null && sampleUser.getId() == user.getId()){

RESTful Web Services

 33

 result = PASS;

 }

 System.out.println("Test case name: testGetUser, Result: " + result);

 }

 //Test: Update User of id 1

 //Test: Check if result is success XML.

 private void testUpdateUser(){

 Form form = new Form();

 form.param("id", "1");

 form.param("name", "suresh");

 form.param("profession", "clerk");

 String callResult = client

 .target(REST_SERVICE_URL)

 .request(MediaType.APPLICATION_XML)

 .post(Entity.entity(form,

 MediaType.APPLICATION_FORM_URLENCODED_TYPE),

 String.class);

 String result = PASS;

 if(!SUCCESS_RESULT.equals(callResult)){

 result = FAIL;

 }

 System.out.println("Test case name: testUpdateUser, Result: " + result);

 }

 //Test: Add User of id 2

 //Test: Check if result is success XML.

 private void testAddUser(){

 Form form = new Form();

 form.param("id", "2");

 form.param("name", "naresh");

 form.param("profession", "clerk");

 String callResult = client

 .target(REST_SERVICE_URL)

 .request(MediaType.APPLICATION_XML)

RESTful Web Services

 34

 .put(Entity.entity(form,

 MediaType.APPLICATION_FORM_URLENCODED_TYPE),

 String.class);

 String result = PASS;

 if(!SUCCESS_RESULT.equals(callResult)){

 result = FAIL;

 }

 System.out.println("Test case name: testAddUser, Result: " + result);

 }

 //Test: Delete User of id 2

 //Test: Check if result is success XML.

 private void testDeleteUser(){

 String callResult = client

 .target(REST_SERVICE_URL)

 .path("/{userid}")

 .resolveTemplate("userid", 2)

 .request(MediaType.APPLICATION_XML)

 .delete(String.class);

 String result = PASS;

 if(!SUCCESS_RESULT.equals(callResult)){

 result = FAIL;

 }

 System.out.println("Test case name: testDeleteUser, Result: " + result);

 }

}

Now run the tester using Eclipse. Right click on the file and follow the option Run as 

Java Application. You will see the following result in the Eclipse console:

Test case name: testGetAllUsers, Result: pass

Test case name: testGetUser, Result: pass

Test case name: testUpdateUser, Result: pass

Test case name: testAddUser, Result: pass

Test case name: testDeleteUser, Result: pass

RESTful Web Services

 35

As per the REST architecture, a RESTful Web Service should not keep a client state on the

server. This restriction is called Statelessness. It is the responsibility of the client to pass

its context to the server and then the server can store this context to process the client's

further request. For example, session maintained by server is identified by session

identifier passed by the client.

RESTful Web Services should adhere to this restriction. We have seen this in the RESTful

Web Services - Methods chapter, that the web service methods are not storing any

information from the client they are invoked from.

Consider the following URL:

http://localhost:8080/UserManagement/rest/UserService/users/1

If you hit the above url using your browser or using a java based client or using Postman,

result will always be the User XML whose Id is 1 because the server does not store any

information about the client.

<user>

<id>1</id>

<name>mahesh</name>

<profession>1</profession>

</user>

Advantages of Statelessness

Following are the benefits of statelessness in RESTful Web Services:

 Web services can treat each method request independently.

 Web services need not maintain the client's previous interactions. It simplifies the

application design.

 As HTTP is itself a statelessness protocol, RESTful Web Services work seamlessly

with the HTTP protocols.

Disadvantages of Statelessness

Following are the disadvantages of statelessness in RESTful Web Services:

 Web services need to get extra information in each request and then interpret to

get the client's state in case the client interactions are to be taken care of.

8. RESTful Web Services – Statelessness

https://www.tutorialspoint.com/restful/restful_methods.htm
https://www.tutorialspoint.com/restful/restful_methods.htm

RESTful Web Services

 36

Caching refers to storing the server response in the client itself, so that a client need not

make a server request for the same resource again and again. A server response should

have information about how caching is to be done, so that a client caches the response

for a time-period or never caches the server response.

Following are the headers which a server response can have in order to configure a client's

caching:

S. No. Header & Description

1
Date

Date and Time of the resource when it was created.

2
Last Modified

Date and Time of the resource when it was last modified.

3
Cache-Control

Primary header to control caching.

4
Expires

Expiration date and time of caching

5
Age

Duration in seconds from when resource was fetched from the server.

Cache-Control Header

Following are the details of a Cache-Control header:

S. No. Directive & Description

1
Public

Indicates that resource is cacheable by any component.

9. RESTful Web Services – Caching

RESTful Web Services

 37

2

Private

Indicates that resource is cacheable only by the client and the server, no

intermediary can cache the resource.

3
no-cache/no-store

Indicates that a resource is not cacheable.

4

max-age

Indicates the caching is valid up to max-age in seconds. After this, client has to

make another request.

5
must-revalidate

Indication to server to revalidate resource if max-age has passed.

Best Practices

 Always keep static contents like images, CSS, JavaScript cacheable, with expiration

date of 2 to 3 days.

 Never keep expiry date too high.

 Dynamic content should be cached for a few hours only.

RESTful Web Services

 38

As RESTful Web Services work with HTTP URL Paths, it is very important to safeguard a

RESTful Web Service in the same manner as a website is secured.

Following are the best practices to be adhered to while designing a RESTful Web Service:

 Validation – Validate all inputs on the server. Protect your server against SQL or

NoSQL injection attacks.

 Session Based Authentication – Use session based authentication to

authenticate a user whenever a request is made to a Web Service method.

 No Sensitive Data in the URL – Never use username, password or session token

in a URL, these values should be passed to Web Service via the POST method.

 Restriction on Method Execution – Allow restricted use of methods like GET,

POST and DELETE methods. The GET method should not be able to delete data.

 Validate Malformed XML/JSON – Check for well-formed input passed to a web

service method.

 Throw generic Error Messages – A web service method should use HTTP error

messages like 403 to show access forbidden, etc.

HTTP Code

S. No. HTTP Code & Description

1
200

OK – shows success.

2

201

CREATED – when a resource is successfully created using POST or PUT request.

Returns link to the newly created resource using the location header.

3
204

NO CONTENT – when response body is empty. For example, a DELETE request.

4

304

NOT MODIFIED – used to reduce network bandwidth usage in case of

conditional GET requests. Response body should be empty. Headers should

have date, location, etc.

10. RESTful Web Services – Security

RESTful Web Services

 39

5

400

BAD REQUEST – states that an invalid input is provided. For example,

validation error, missing data.

6

401

UNAUTHORIZED – states that user is using invalid or wrong authentication

token.

7

403

FORBIDDEN – states that the user is not having access to the method being

used. For example, Delete access without admin rights.

8
404

NOT FOUND – states that the method is not available.

9

409

CONFLICT – states conflict situation while executing the method. For example,

adding duplicate entry.

10

500

INTERNAL SERVER ERROR – states that the server has thrown some

exception while executing the method.

RESTful Web Services

 40

JAX-RS stands for JAVA API for RESTful Web Services. JAX-RS is a JAVA based

programming language API and specification to provide support for created RESTful Web

Services. Its 2.0 version was released on the 24th May 2013. JAX-RS uses annotations

available from Java SE 5 to simplify the development of JAVA based web services creation

and deployment. It also provides supports for creating clients for RESTful Web Services.

Specifications

Following are the most commonly used annotations to map a resource as a web service

resource.

S. No. Annotation & Description

1
@Path
Relative path of the resource class/method.

2
@GET
HTTP Get request, used to fetch resource.

3
@PUT
HTTP PUT request, used to create resource.

4
@POST

HTTP POST request, used to create/update resource.

5
@DELETE
HTTP DELETE request, used to delete resource.

6
@HEAD

HTTP HEAD request, used to get status of method availability.

7

@Produces

States the HTTP Response generated by web service. For example,
APPLICATION/XML, TEXT/HTML, APPLICATION/JSON etc.

8 @Consumes

11. RESTful Web Services – Java (JAX-RS)

RESTful Web Services

 41

States the HTTP Request type. For example, application/x-www-form-

urlencoded to accept form data in HTTP body during POST request.

9
@PathParam
Binds the parameter passed to the method to a value in path.

10
@QueryParam

Binds the parameter passed to method to a query parameter in the path.

11
@MatrixParam
Binds the parameter passed to the method to a HTTP matrix parameter in path.

12
@HeaderParam

Binds the parameter passed to the method to a HTTP header.

13
@CookieParam
Binds the parameter passed to the method to a Cookie.

14
@FormParam
Binds the parameter passed to the method to a form value.

15
@DefaultValue
Assigns a default value to a parameter passed to the method.

16
@Context
Context of the resource. For example, HTTPRequest as a context.

Note: We have used Jersey, a reference implementation of JAX-RS 2.0 by Oracle, in the

RESTful Web Services - First Application and RESTful Web Services - Methods chapters.

https://www.tutorialspoint.com/restful/restful_first_application.htm
https://www.tutorialspoint.com/restful/restful_methods.htm

