
 

 

  



Pyramid - Python Web Framework 

 

i 

 

 

About the Tutorial 

Pyramid is an open source, WSGI compliant web framework written in 

Python. Initially the project named as Pylons, but later released under the 

new name Pyramid.  

Apart from Pyramid, the Pylons Project consists of different web application 

technologies such as Waitress (a WSGI server), SubstanceD 

(Pyramid-based application server), WebOb (a WSGI request/response 

library), and many more. 

Audience 

This tutorial is designed for Python developers who want to learn to build 

robust, scalable MVC pattern web applications using Pyramid framework. 

Prerequisites 

Before you proceed, make sure that you understand the basics of procedural 

and object-oriented programming in Python. Knowledge of REST 

architecture is an added advantage. 

Disclaimer & Copyright 

 Copyright 2022 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of 

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, 

retain, copy, distribute or republish any contents or a part of contents of 

this e-book in any manner without written consent of the publisher.   

We strive to update the contents of our website and tutorials as timely and 

as precisely as possible, however, the contents may contain inaccuracies or 

errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the 

accuracy, timeliness or completeness of our website or its contents 

including this tutorial. If you discover any errors on our website or in this 

tutorial, please notify us at contact@tutorialspoint.com. 

 

 

mailto:contact@tutorialspoint.com


Pyramid - Python Web Framework 

 

ii 

 

Table of Contents 

About the Tutorial ........................................................................................................ i 

Audience ...................................................................................................................... i 

Prerequisites ................................................................................................................ i 

Disclaimer & Copyright ................................................................................................. i 

Table of Contents ........................................................................................................ ii 

1. PYRAMID – OVERVIEW ................................................................................1 

Comparison with Other Python Frameworks .............................................................. 1 

2. PYRAMID – ENVIRONMENT SETUP ..............................................................3 

3. PYRAMID – HELLO WORLD ..........................................................................4 

4. PYRAMID – APPLICATION CONFIGURATION ................................................7 

Declarative Configuration ........................................................................................... 9 

5. PYRAMID – URL ROUTING .........................................................................12 

Route Configuration .................................................................................................. 12 

Route Matching ......................................................................................................... 14 

6. PYRAMID – VIEW CONFIGURATION ...........................................................17 

Using add_view() Method ......................................................................................... 17 

Using @view_config() Decorator ............................................................................... 20 

Using @view_defaults() Decorator............................................................................ 23 

7. PYRAMID – ROUTE PREFIX .........................................................................26 

 



Pyramid - Python Web Framework 

 

iii 

 

8. PYRAMID – TEMPLATES .............................................................................29 

Template Bindings..................................................................................................... 30 

Jinja2 Template Library ............................................................................................. 31 

Rendering Template .................................................................................................. 31 

Rendering via Configuration ...................................................................................... 33 

Add/Change Renderer ............................................................................................... 36 

Template Context from matchdict ............................................................................ 37 

Conditionals and Loops in Template .......................................................................... 39 

9. PYRAMID – HTML FORM TEMPLATE ..........................................................42 

10. PYRAMID – STATIC ASSETS ........................................................................46 

Static Image .............................................................................................................. 46 

Javascript as Static Asset ........................................................................................... 48 

11. PYRAMID – REQUEST OBJECT ....................................................................50 

12. PYRAMID – RESPONSE OBJECT ..................................................................52 

13. PYRAMID – SESSIONS ................................................................................54 

Default Session Factory ............................................................................................. 54 

Session Example ........................................................................................................ 55 

14. PYRAMID – EVENTS ...................................................................................60 

15. PYRAMID – MESSAGE FLASHING ...............................................................62 

Message Flashing Example ........................................................................................ 62 

 



Pyramid - Python Web Framework 

 

iv 

 

16. PYRAMID – USING SQLALCHEMY ...............................................................68 

Database Engine........................................................................................................ 69 

Model Class ............................................................................................................... 69 

Add a New Student Record ....................................................................................... 70 

Show List of All Records ............................................................................................ 73 

Update Existing Record ............................................................................................. 75 

Delete a Record ......................................................................................................... 77 

17. PYRAMID – COOKIECUTTER .......................................................................83 

18. PYRAMID – CREATING A PROJECT ..............................................................84 

Debug Toolbar ........................................................................................................... 87 

19. PYRAMID – PROJECT STRUCTURE ..............................................................89 

development.ini ........................................................................................................ 89 

production.ini ........................................................................................................... 91 

20. PYRAMID – PACKAGE STRUCTURE .............................................................93 

__init__.py ................................................................................................................ 93 

routes.py ................................................................................................................... 93 

Views Package ........................................................................................................... 94 

static folder ............................................................................................................... 95 

templates folder........................................................................................................ 95 

models Package ........................................................................................................ 96 

21. PYRAMID – CREATING A PROJECT MANUALLY ...........................................97 

setup.py .................................................................................................................... 97 



Pyramid - Python Web Framework 

 

v 

 

development.ini ........................................................................................................ 98 

__init__.py ................................................................................................................ 98 

22. PYRAMID – COMMAND LINE PYRAMID ................................................... 100 

pserve ..................................................................................................................... 100 

pviews ..................................................................................................................... 102 

pshell ...................................................................................................................... 103 

prequest .................................................................................................................. 106 

proutes.................................................................................................................... 107 

23. PYRAMID – TESTING ................................................................................ 108 

Functional Testing ................................................................................................... 110 

Tests in Cookiecutter Project ................................................................................... 113 

24. PYRAMID – LOGGING .............................................................................. 116 

25. PYRAMID – SECURITY .............................................................................. 120 

26. PYRAMID – DEPLOYMENT ....................................................................... 128 

mod_wsgi ................................................................................................................ 128 

Deploy on Uvicorn ................................................................................................... 130 



Pyramid - Python Web Framework 

 

1 

 

Pyramid is an open source, WSGI compliant web framework written in 

Python. Initially the project named as Pylons, but later released under the 

new name Pyramid.  

 Pyramid is a minimalistic web framework. It doesn't come packaged 

with any templating library or doesn't have support for any specific 

database packages.  

 

 However, it can be integrated both with SQL databases via 

SQLAlchemy and with the Zope Object Database, as well as other 

NoSQL databases such as CouchDB.  

 

 Pyramid can also be configured to work with templating libraries 

such as Mako, Jinja2 or Chameleon. 

 

 Pyramid has been developed by Chris McDonough. The first 

version of Pyramid was released in January 2011. The latest version, 

Pyramid 2.0 has been released in March 2021. 

Comparison with Other Python Frameworks 

Pyramid web application framework is inspired by Zope and Django 

frameworks. As a result, it combines the best provisions of the two.  

 Pyramid is largely based on repose.bfg framework. After it was 

merged with the Pylons project, the same was renamed as Pyramid 

in 2010.  

 

 The ability to extend Pyramid application is borrowed from Zope 

library. Without modifying the application code, the application can 

be reused, modified or extended. The features such as declarative 

security layer and traversal of routes is inherited from Zope. 

 

 As is the case of Pylons 1.0, Pyramid doesn't enforce any policy. It 

also lets the user choose any database or templating system The 

URL dispatch approach is also inspired by Pylons. 

 

1. Pyramid – Overview 



Pyramid - Python Web Framework 

 

2 

 

 The concept of views is based on similar approach of Django. 

Extensive documentation is also a Django features adapted by 

Pyramid. 

 

 Although the definition doesn't fit exactly, Pyramid can be said to 

follow MVC (Model-View-Controller) approach. 

 



Pyramid - Python Web Framework 

 

3 

 

It is recommended that the Pyramid package be installed on a system 

having Python 3.6 or above version installed. Pyramid can be installed on 

Linux, MacOS as well as Windows platform. Simplest way of installing it is 

by using PIP installer, preferably under a Python virtual environment. 

pip3 install pyramid 

Although a Pyramid web application can be run using the built-in WSGI 

development server that is a part of the wsgiref module, it is not 

recommended for use in production environment. Hence, we also install 

Waitress, a production-quality pure-Python WSGI server (also a part of 

Pylons project) 

pip3 install waitress 

This will install Pyramid (ver 2.0), Waitress (ver 2.1.2) in addition to other 

dependencies from Pylon project such that WebOb, PasteDeploy, and 

others. To check what gets installed, run pip freeze command. 

pip3 freeze 

hupper==1.10.3 

PasteDeploy==2.1.1 

plaster==1.0 

plaster-pastedeploy==0.7 

pyramid==2.0 

translationstring==1.4 

venusian==3.0.0 

waitress==2.1.2 

WebOb==1.8.7 

zope.deprecation==4.4.0 

zope.interface==5.4.0 

 

2. Pyramid – Environment Setup 



Pyramid - Python Web Framework 

 

4 

 

To check whether Pyramid along with its dependencies are properly 

installed, enter the following code and save it as hello.py, using any 

Python-aware editor. 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

 

def hello_world(request): 

    return Response('Hello World!') 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('hello', '/') 

        config.add_view(hello_world, route_name='hello') 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

The Configurator object is required to define the URL route and bind a 

view function to it. The WSGI application object is obtained from this config 

object is an argument to the make_server() function along with the IP 

address and port of localhost. The server object enters a listening loop when 

serve_forever() method is called. 

Run this program from the command terminal as  

Python hello.py 

The WSGI server starts running. Open the browser and enter 

http://loccalhost:6543/ in the address bar. When the request is accepted, 

the hello_world() view function gets executed. It returns the Hello world 

message.  The Hello world message will be seen in the browser window. 

3. Pyramid – Hello World 

http://loccalhost:6543/


Pyramid - Python Web Framework 

 

5 

 

 

As mentioned earlier, the development server created by make_server() 

function in the wsgiref module is not suited for production environment. 

Instead, we shall use Waitress server. Modify the hello.py as per the 

following code: 

from pyramid.config import Configurator 

from pyramid.response import Response 

from waitress import serve 

 

def hello_world(request): 

    return Response('Hello World!') 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('hello', '/') 

        config.add_view(hello_world, route_name='hello') 

        app = config.make_wsgi_app() 

        serve(app, host='0.0.0.0', port=6543) 

All other functionality is same, except we use serve() function of waitress 

module to start the WSGI server. On visiting the '/' route in the browser 

after running the program, the Hello world message is displayed as before. 

Instead of a function, a callable class can also be used as a view. A callable 

class is the one which overrides the __call__() method. 

from pyramid.response import Response 

 

class MyView(object): 



Pyramid - Python Web Framework 

 

6 

 

    def __init__(self, request): 

        self.request = request 

 

    def __call__(self): 

        return Response('hello world') 

 



Pyramid - Python Web Framework 

 

7 

 

The Pyramid application object has an application registry that stores 

mappings of view functions to routes, and other application-specific 

component registrations. The Configurator class is used to build the 

application registry. 

The Configurator life cycle is managed by a context manager that returns 

an application object. 

with Configurator(settings=settings) as config: 

    #configuration methods 

    app = config.make_wsgi_app() 

The Configurator class defines the following important methods to 

customize the application: 

add_route()  

This method registers a route for URL dispatch. Following arguments are 

used: 

 name: the first required positional argument must be a unique 

name for the route. The name is used to identify the route when 

registering views or generating URLs. 

 

 pattern: The second required positional argument is a string 

representing the URL path optionally containing variable placeholders 

for parsing the variable data from the URL. The placeholders are 

surrounded by curly brackets. For example, "/students/{id}". 

 

 request_method: The value can be one of "GET", "POST", "HEAD", 

"DELETE", "PUT". Requests only of this type will be matched against 

the route. 

add_view() 

This method adds a view configuration to the application registry. It binds 

a view function to the route_name present in the configuration. The 

arguments required are: 

4. Pyramid – Application Configuration 



Pyramid - Python Web Framework 

 

8 

 

 view: The name of a view function. 

 

 route_name: A string that must match the name of a route 

configuration declaration. 

 

 request_method:  Either a string (such as "GET", "POST", "PUT", 

"DELETE", "HEAD" or "OPTIONS") representing an HTTP 

REQUEST_METHOD, or a tuple containing one or more of these strings. 

add_static_view() 

This method adds a view used to render static assets such as images and 

CSS files, and uses the following arguments: 

 name: This argument is a string representing an application-relative 

local URL prefix, or a full URL. 

 

 Path: This argument represents the path on disk where the static 

files reside. Its value can be an absolute or a package-relative path. 

This method in turn calls the add_route() method of Configurator object. 

add_notfound_view() 

This method adds a view to be executed when a matching view cannot be 

found for the current request. The following code shows an example: 

from pyramid.config import Configurator 

from pyramid.response import Response 

 

def notfound(request): 

    return Response('Not Found', status='404 Not Found') 

 

config.add_notfound_view(notfound) 

add_forbidden_view() 

Configures the application registry so as to define a view to be executed 

when there is HTTPForbidden exception raised. The argument list contains 



Pyramid - Python Web Framework 

 

9 

 

a reference to a function that returns a 403 status response. If no argument 

is provided, the registry adds default_exceptionresponse_view(). 

add_exception_view() 

This method causes addition of an exception view function to the 

configuration, for the specified exception. 

make_wsgi_app() 

This method returns a Pyramid WSGI application object. 

scan() 

This is a wrapper for registering views. It imports all application modules 

looking for @view_config decorators.  

For each one, it calls config.add_view(view) with the same keyword 

arguments. A call to scan() function performs the scan of the package and 

all the subpackages for all the decorations. 

A typical sequence of statements that performs configuration of application 

registry is as in the following code snippet: 

from pyramid.config import Configurator 

 

with Configurator() as config: 

    config.add_route('hello', '/') 

    config.add_view(hello_world, route_name='hello') 

    app = config.make_wsgi_app() 

This approach towards configuration of the application is called imperative 

configuration. Pyramid provides another approach towards configuration, 

called as decorative configuration. 

Declarative Configuration 

Sometimes, it becomes difficult to do the configuration by imperative code, 

especially when the application code is spread across many files. The 

declarative configuration is a convenient approach. The pyramid.view 

model defines view_config – a function, class or method decorator - that 



Pyramid - Python Web Framework 

 

10 

 

allows the view registrations very close to the definition of view function 

itself. 

Two important arguments are provided to @view_config() decorator. 

They are route_name and request_method. They bear same explanation 

as in add_route() method of Configurator class. The function just below it 

is decorated so that it is bound to the route added to the registry of the 

application object. 

Give below is the example of declarative configuration of hello_world() 

view function: 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config(route_name='hello', request_method='GET') 

def hello_world(request): 

    return Response('Hello World!') 

The view_config decorator adds an attribute to the hello_world() function, 

making it available for a scan to find it later. 

The combination of configuration decoration and the invocation of a scan is 

collectively known as declarative configuration. Following code configures 

the application registry with declarative approach.  

The scan() function discovers the routes and their mapped views, so that 

there is the need to add imperative configuration statements.  

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config(route_name='hello', request_method='GET') 

def hello_world(request): 

    return Response('Hello World!') 

 

if __name__ == '__main__': 

    with Configurator() as config: 



Pyramid - Python Web Framework 

 

11 

 

        config.add_route('hello', '/') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

The scanner translates the arguments to view_config into a call to the 

pyramid.config.Configurator.add_view() method, so that the action is 

equivalent to the following statement: 

config.add_view(hello_world, route_name='hello', 

request_method='GET') 

After the above program is run, the WSGI server starts. When the browser 

visits the link http://localhost:6543/, the "Hello World" message is rendered 

as before. 

 

 



Pyramid - Python Web Framework 

 

12 

 

Before the advent of MVC architecture, web applications used the 

mechanism of mapping the URL entered by the user in the browser, to a 

program file whose output was rendered as HTML to as a response back to 

the browser. Pyramid framework uses a routing mechanism where the 

endpoint of the URL is matched with different URL patterns registered in the 

application's registry, invokes its mapped view and renders the response. 

A typical URL comprises of three parts: The protocol (such as http:// or 

https://) followed by the IP address or hostname. The remaining part of the 

URL after first / after the hostname is called as the path or endpoint. 

 

The endpoint followed by one or more variable parts forms the route. The 

variable part identifiers are surrounded by curly brackets. For example, for 

the above URL, the route is /blog/{id} 

The WSGI application acts as a router. It checks the incoming request 

against the URL patterns present in the route map. If a match is found, its 

associated view callable is executed and the response is returned. 

Route Configuration 

A new route is added to the application by invoking add_route() method of 

the Configurator object. A route has a name, which acts as an identifier to 

be used for URL generation and a pattern that is meant to match against 

the PATH_INFO portion of a URL (the portion following the scheme and port, 

e.g., /blog/1 in the URL http://example.com/blog/1). 

As mentioned earlier, the pattern parameter of add_route() method can 

have one or more placeholder identifiers surrounded by curly brackets and 

separated by /. Following statement assigns 'index' as the name of route 

given to  '/{name}/{age}' pattern. 

5. Pyramid – URL Routing 

http://example.com/blog/1


Pyramid - Python Web Framework 

 

13 

 

config.add_route('index', '/{name}/{age}') 

To associate a view callable to this route, we use add_view() function as 

follows: 

config.add_view(index, route_name='index') 

The index() function should be available for the route to be matched to it. 

def index(request): 

    return Response('Root Configuration Example') 

We put these statements in the program below: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

 

def index(request): 

    return Response('Root Configuration Example') 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('index', '/{name}/{age}') 

        config.add_view(index, route_name='index') 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Run the above code and visit http://localhost:6543/Ravi/21 in the browser. 

As the URL's PATH_INFO matches with the index route, the following output 

is displayed: 

http://localhost:6543/Ravi/21


Pyramid - Python Web Framework 

 

14 

 

 

The pattern used in route configuration usually starts with a forward slash 

(/) character. A pattern segment (an individual item between / characters 

in the pattern) may either be a literal string, or it may be a placeholder 

marker (e.g., {name}), or a certain combination of both. A replacement 

marker does not need to be preceded by a / character. 

Here are some examples of route patterns 

/student/{name}/{marks} 

/{id}/student/{name}/{marks} 

/customer/{id}/item/{itemno} 

/{name}/{age} 

The place holder identifier must be a valid Python identifier. Hence, it must 

begin with an uppercase or lowercase ASCII letter or an underscore, and it 

can only have uppercase or lowercase ASCII letters, underscores, and 

numbers. 

Route Matching 

When the incoming request matches with the URL pattern associated with 

a particular route configuration, a dictionary object named matchdict is 

added as an attribute of the request object.  

The request.matchdict contains the values that match replacement 

patterns in the pattern element. The keys in a matchdict are strings, while 

their values are Unicode objects.  

In the previous example, change the index() view function to following: 

def index(request): 

    return Response(str(request.matchdict)) 



Pyramid - Python Web Framework 

 

15 

 

The browser displays the path parameters in the form of a dict object. 

 

When the request matches a route pattern, the request object passed to 

the view function also includes a matched_route attribute. The name of 

the matched route can be obtained from its name property. 

In the following example, we have two view functions student_view() and 

book_view() defined with the help of @view.config() decorator.  

The application's registry is configured to have two corresponding routes –  

'student' mapped to '/student/{name}/{age}' pattern and 'book' 

mapped to '/book/{title}/{price}' pattern. We call the scan() method 

of configurator object to add the views. 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config(route_name='student') 

def student_view(request): 

    return Response(str(request.matchdict)) 

@view_config(route_name='book') 

def book_view(request): 

    title=request.matchdict['title'] 

    price=request.matchdict['price'] 

    return Response('Title: {}, Price: 

{}'.format(title,price)) 

 



Pyramid - Python Web Framework 

 

16 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('student', '/student/{name}/{age}') 

        config.add_route('book', '/book/{title}/{price}') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

When the browser is given http://localhost:6543/student/Ravi/21 URL, the 

output is  

{'name': 'Ravi', 'age': '21'} 

If the URL entered is http://localhost:6543/book/Python/300, the output is 

Title: Python, Price: 300 

 

http://localhost:6543/student/Ravi/21
http://localhost:6543/book/Python/300


Pyramid - Python Web Framework 

 

17 

 

The term "View Configuration" refers to the mechanism of associating a 

view callable (a function, method or a class) with the information of route 

configuration. Pyramid finds the best callable for the given URL pattern.  

There are three ways to configure a view: 

 Using add_view() method 

 Using @view_config() decorator 

 Using @view_defaults () class decorator 

Using add_view() Method 

This is the simplest method of configuring a view imperatively by calling the 

add_view() method of the Configurator object. 

This method uses the following arguments: 

 name: The view name required to match this view callable. If name 

is not supplied, the empty string is used (implying the default view). 

 

 context: This resource must be an object of a Python class in order 

for this view to be found and called. If context is not supplied, the 

value None, which matches any resource, is used. 

 

 route_name: This value must match the name of a route 

configuration declaration that must match before this view will be 

called. If route_name is supplied, the view callable will be invoked 

only when the named route has matched. 

 

 request_type: an interface that the request must provide in order 

for this view to be found and called. 

 

 request_method: a string (such as "GET", "POST", "PUT", 

"DELETE", "HEAD", or "OPTIONS") representing an HTTP 

REQUEST_METHOD or a tuple containing one or more of these 

strings. The view will be called only when the method attribute of 

the request matches a supplied value. 

 

6. Pyramid – View Configuration 



Pyramid - Python Web Framework 

 

18 

 

 request_param: This argument can be any string or a sequence of 

strings. The view will only be called when the request.params 

dictionary  has a key which matches the supplied value.  

In the following example, two functions getview() and postview() are 

defined and associated with two routes of the same name. These functions 

just return the name of the HTTP method by which they are called.  

The getview() function is called when the URL /get is requested using GET 

method. Similarly, the postview() function is executed when /post path id 

requested by POST method.  

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

def getview(request): 

    ret=request.method 

    return Response('Method: {}'.format(ret)) 

def postview(request): 

    ret=request.method 

    return Response('Method: {}'.format(ret)) 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('getview', '/get') 

        config.add_route('postview', '/post') 

        config.add_view(getview, 

route_name='getview',request_method='GET') 

        config.add_view(postview,route_name='postview', 

request_method='POST') 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 



Pyramid - Python Web Framework 

 

19 

 

While the GET request can be sent by using the web browser as HTTP client, 

it is not possible to use it for POST request. Hence, we use the CURL 

command line utility. 

C:\Users\Acer>curl localhost:6543/get 

Method: GET 

C:\Users\Acer>curl -d "param1=value1" -H "Content-Type: 

application/json" -X POST http://localhost:6543/post 

Method: POST 

As mentioned earlier, the request_method parameter can be a list of one 

or more HTTP methods. Let us modify the above program and define a 

single oneview() function that identifies the HTTP method that causes its 

execution. 

def oneview(request): 

    ret=request.method 

    return Response('Method: {}'.format(ret)) 

This function is registered in the application's configuration for all the HTTP 

methods. 

config.add_route('oneview', '/view') 

config.add_view(oneview, route_name='oneview', 

               request_method=['GET','POST', 'PUT', 'DELETE']) 

The CURL output is shown as below: 

C:\Users\Acer>curl localhost:6543/view 

Method: GET 

C:\Users\Acer>curl -d "param1=value1" -H "Content-Type: 

application/json" -X POST http://localhost:6543/view 

Method: POST 

C:\Users\Acer>curl -d "param1=value1" -H "Content-Type: 

application/json" -X PUT http://localhost:6543/view 

Method: PUT 

C:\Users\Acer>curl -X DELETE http://localhost:6543/view 



Pyramid - Python Web Framework 

 

20 

 

Method: DELETE 

Using @view_config() Decorator 

Instead of adding views imperatively, the @view_config decorator can be 

used to associate the configured routes with a function, a method or even 

a callable class.  

As described in the Declarative Configuration section, a registered route can 

be associated with a function as in the following example: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

@view_config(route_name='hello') 

def hello_world(request): 

    return Response('Hello World!') 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('hello', '/') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Note that the views are added into the application configuration only after 

calling the scan() method. While removes the need for imperatively adding 

the views, the performance may be slightly slower. 

The view_config() decorator can also be given same arguments as that of 

add_view() method. All arguments may be omitted. 

 

@view_config() 



Pyramid - Python Web Framework 

 

21 

 

def hello_world(request): 

    return Response('Hello World!') 

In such a case, the function will be registered with any route name, any 

request method or parameters. 

The view_config decorator is placed just before the definition of callable 

view function, as in the above example. It can also be put on top of a class 

if it is to be used as the view callable. Such a class must have a __call__() 

method. 

In the following Pyramid application code, the MyView class is used as a 

callable and is decorated by the @view_config decorator. 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config(route_name='hello') 

class MyView(object): 

    def __init__(self, request): 

        self.request = request 

 

    def __call__(self): 

        return Response('hello World') 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('hello', '/') 

        #config.add_view(MyView, route_name='hello') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 



Pyramid - Python Web Framework 

 

22 

 

    server.serve_forever() 

Note that instead of scanning for view configurations, we can add views by 

explicitly calling the add_view() method. 

If the methods in a class have to be associated with different routes, 

separate @view_config() should be used on top of each one of them, as 

done in the following example. Here, we have two methods bound to two 

separate routes. 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

class MyView(object): 

    def __init__(self, request): 

        self.request = request 

 

    @view_config(route_name='getview', request_method='GET') 

    def getview(self): 

        return Response('hello GET') 

    @view_config(route_name='postview', request_method='POST') 

    def postview(self): 

        return Response('hello POST') 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('getview', '/get') 

        config.add_route('postview', '/post') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 



Pyramid - Python Web Framework 

 

23 

 

    server.serve_forever() 

Here's the output of CURL commands: 

C:\Users\Acer>curl localhost:6543/get 

hello GET 

C:\Users\Acer>curl -d "param1=value1" -H "Content-Type: 

application/json" -X POST http://localhost:6543/post 

hello POST 

Using @view_defaults() Decorator 

view_defaults() is a class decorator. If you have to add the methods in a 

class as view with some common parameters and some specific parameters, 

the common parameters can be specified in the view_defaults() decorator 

on top of the class, performing configuration of each method by a separate 

view_config() before each one of them. 

In the following code, we have different methods responding to the same 

route but with different request_method. Hence we define the rout name 

as default, and specify the request_method in each view configuration. 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

from pyramid.view import view_defaults 

 

@view_defaults(route_name='myview') 

class MyView(object): 

    def __init__(self, request): 

        self.request = request 

 

    @view_config( request_method='GET') 

    def getview(self): 



Pyramid - Python Web Framework 

 

24 

 

        return Response('hello GET') 

    @view_config(request_method='POST') 

    def postview(self): 

        return Response('hello POST') 

    @view_config(request_method='PUT') 

    def putview(self): 

        return Response('hello PUT') 

    @view_config(request_method='DELETE') 

    def delview(self): 

        return Response('hello DELETE') 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('myview', '/view') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

The CURL commands with different HTTP requests to the server are as 

follows: 

C:\Users\Acer>curl localhost:6543/view 

hello GET 

C:\Users\Acer>curl -d "param1=value1" -H "Content-Type: 

application/json" -X POST http://localhost:6543/view 

hello POST 

C:\Users\Acer>curl -d "param1=value1" -H "Content-Type: 

application/json" -X PUT http://localhost:6543/view 

hello PUT 

C:\Users\Acer>curl -X DELETE http://localhost:6543/view 



Pyramid - Python Web Framework 

 

25 

 

hello DELETE 

 



Pyramid - Python Web Framework 

 

26 

 

Many times, similar URL patterns are registered with different routes in 

more than one Python code modules. For example, we have a 

student_routes.py where /list and /add URL patterns are registered with 

'list' and 'add' routes. The view functions associated with these routes are 

list() and add(), respectively. 

#student_routes.py 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config( route_name='add') 

def add(request): 

    return Response('add student') 

@view_config(route_name='list') 

def list(request): 

    return Response('Student list') 

 

def students(config): 

    config.add_route('list', '/list') 

    config.add_route('add', '/add') 

    config.scan() 

These routes will eventually be registered when the students() function is 

called. 

At the same time, there is book_routes.py, in which the same URLs /list 

and /add are registered to 'show' and 'new' routes. Their associated views 

are list() and add() respectively. The module has books() function which 

adds the routes. 

 

7. Pyramid – Route Prefix 



Pyramid - Python Web Framework 

 

27 

 

#book_routes.py 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config( route_name='new') 

def add(request): 

    return Response('add book') 

@view_config(route_name='show') 

def list(request): 

    return Response('Book list') 

 

def books(config): 

    config.add_route('show', '/list') 

    config.add_route('new', '/add') 

    config.scan() 

Obviously, there is a conflict between URL patterns as '/list' and '/add' point 

to two routes each and this conflict must be resolved. This is done by using 

the route_prefix parameter of the config.include() method. 

The first parameter to config.include() is the function which adds the routes, 

and the second is the route_prefix string which will be prepended to the 

URL pattern used in the included function. 

Hence, the statement 

config.include(students, route_prefix='/student') 

will result in the '/list' URL pattern changed to '/student/list' and '/add' 

becomes 'student/add'. Similarly, we can add prefix to these URL patterns 

in the books() function. 

config.include(books, route_prefix='/books') 

 



Pyramid - Python Web Framework 

 

28 

 

The code that starts the server is as below: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from student_routes import students 

from book_routes import books 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.include(students, route_prefix='/student') 

        config.include(books, route_prefix='/book') 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Let us run the above code and test the routes by following CURL commands. 

C:\Users\Acer>curl localhost:6543/student/list 

Student list 

C:\Users\Acer>curl localhost:6543/student/add 

add student 

C:\Users\Acer>curl localhost:6543/book/add 

add book 

C:\Users\Acer>curl localhost:6543/book/list 

Book list 

 



Pyramid - Python Web Framework 

 

29 

 

By default, the content-type of the response of a view function is in plain 

text. In order to render HTML, the text of the response body may include 

HTML tags, as in the following example: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

 

def hello_world(request): 

    return Response('<h1 style="text-align:center;">Hello 

World!</h1>') 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('hello', '/') 

        config.add_view(hello_world, route_name='hello') 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

After starting the server (by running the above code), visit to 

http://localhost:6543/, the browser renders following output: 

 

8. Pyramid – Templates 

http://localhost:6543/


Pyramid - Python Web Framework 

 

30 

 

However, this method of rendering HTML, especially if it is likely to contain 

certain variable data, is extremely cumbersome. For this purpose, web 

frameworks use templating libraries. A template library merges the variable 

data with the otherwise static HTML code to generate and render web pages 

dynamically.  

Template Bindings 

Pyramid provides templating support with the help of bindings to popular 

template libraries such as jinja2, Mako and Chameleon. 

Template Language Pyramid Bindings Default Extensions 

Chameleon pyramid_chameleon .pt, .txt 

Jinja2 pyramid_jinja2 .jinja2 

Mako pyramid_mako .mak, .mako 

 

First of all, we need to install the corresponding Python library for using the 

required template library. For example, to use jinja2 template, install 

pyramid_jinja2 using PIP installer. 

pip3 install pyramid_jinja2 

Then we need to include it in the application configuration. 

config.include('pyramid_jinja2') 

The pyramid.renderers module defines render_to_response() function. It is 

used with following parameters: 

render_to_response(renderer_name, value, request) 

The renderer_name is the template web page, usually saved in the 

templates subfolder of the application directory, the value parameter is a 

dictionary passed as a context to the template, and the request object 

obtained from WSGI environment. 

 

 



Pyramid - Python Web Framework 

 

31 

 

Save the following HTML script as hello.jinja2 in the templates folder. 

<html> 

  <body> 

    <h1>Hello, {{ name }}!</h1>    

  </body> 

</html> 

Jinja2 Template Library 

Here, 'name' is a jinja2 template variable. The jinja2 template language 

inserts variables and programming constructs in the HTML scripts using 

following syntax: 

Expressions 

 {{ ... }} for Expressions to print to the template output 

 {% ... %} for Statements 

 {# ... #} for Comments not included in the template output 

Conditionals 

 {% if expr %} 

 {%  else %} 

 {% endif %} 

Loop 

 {% for var in iterable %} 

 {% endfor %} 

In hello.jinja2 {{ name }}, the value of 'name' context variable is 

dynamically rendered in the view response. 

Rendering Template 

The hello_world() view function directly renders this template by calling 

render_to_response() function. It also sends a context value to the 

template. 



Pyramid - Python Web Framework 

 

32 

 

from pyramid.renderers import render_to_response 

 

def hello_world(request): 

    return render_to_response('templates/hello.jinja2', 

                              {'name':'Tutorialspoint'}, 

                              request=request)  

As usual, this view is added to the hello route, pointing to / URL. The 

complete application code is as follows: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.renderers import render_to_response 

 

def hello_world(request): 

    return render_to_response('templates/hello.jinja2', 

                              {'name':'Tutorialspoint'}, 

                              request=request) 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.add_route('hello', '/') 

        config.include('pyramid_jinja2') 

        config.add_view(hello_world, route_name='hello') 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Run the server and visit http://localhost:6543/. The browser shows 

following result: 

http://localhost:6543/


Pyramid - Python Web Framework 

 

33 

 

 

Every view must return a response object. The render_to_response() 

function is a shortcut function that actually returns a response object. This 

allows the hello_world view above to simply return the result of its call to 

render_to_response() directly. 

On the other hand, pyramid.renderers.render() function renders a 

template to a string. We can manufacture a response object directly, and 

use that string as the body of the response.  

Let us change the hello_world() view function as follows: 

from pyramid.renderers import render 

 

def hello_world(request): 

    retval =  render('templates/hello.jinja2', 

    {'name':'Tutorialspoint'}, request=request) 

    return Response(retval) 

Remaining code being same, the browser also shows the same output as 

above. 

Rendering via Configuration 

As mentioned earlier, the content_type of HTTP response returned by 

Pyramid's view callable id text/plain. However, it can be altered to string, 

JSON or JSONP if the renderer parameter of the @view_config decorator is 

assigned with any of these values. Pyramid thus have following built-in 

renderers: 

 JSON 

 String  

 JSONP 



Pyramid - Python Web Framework 

 

34 

 

In the following example, the hello_world() view function is configured to 

render JSON response. 

from pyramid.view import view_config 

 

@view_config(route_name='hello',renderer='json') 

def hello_world(request): 

    return {'content':'Hello World!'} 

The setting of renderer type to JSON also sets the content_type header of 

the HTTP response to application/json. The browser displays the JSON 

response as in the following figure: 

 

The renderer parameter of the @view_config() decorator can be set to a 

template web page (which must be present in the templates folder). The 

prerequisite conditions are that the appropriate Python binding of the 

template library must be installed, and the application configuration must 

include the binding.  

We have already installed python_jinja2 package, so that we can use jinja2 

template to be rendered by the hello_world() view function, decorated by 

@view_config() with renderer parameter. 

The hello.jinja2 template HTML code is as follows: 

<html> 

  <body> 

    <h1>Hello, {{ name }}!</h1>    

  </body> 

</html> 

 



Pyramid - Python Web Framework 

 

35 

 

The decorated hello_world() function is written as: 

from pyramid.view import view_config 

 

@view_config(route_name='hello', renderer='templates/hello.jinja2') 

def hello_world(request): 

    return {'name':'Pyramid!'} 

In this case, the view function returns a dictionary object. It is made 

available to the template as the context data, that can be inserted in the 

HTML text with the help of template language syntax elements.  

The complete code to render a jinja2 template is as follows: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config(route_name='hello', 

renderer='templates/hello.jinja2') 

def hello_world(request): 

    return {'name':'Pyramid!'} 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.include('pyramid_jinja2') 

        config.add_route('hello', '/') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

 



Pyramid - Python Web Framework 

 

36 

 

The template webpage with variable data supplied by the view function 

looks as below: 

 

Add/Change Renderer 

Templates are nothing but web pages interspersed with template language 

syntax. Even though Pyramid uses the default extension of a jinja2 template as 

".jinja2", the established practice is to use the ".html" extension of web pages.  

We can change the application configuration to let the .html extension be 

used in addition to ".jinja2". This is done by the add_jinja2_renderer.  

config.add_jinja2_renderer(".html") 

The hello.jinja2 template is now renamed as hello.html. To be able to use 

this template, let us change the view function definition to the following 

code: 

from pyramid.view import view_config 

 

@view_config(route_name='hello', 

renderer='templates/hello.html') 

def hello_world(request): 

    return {'name':'Pyramid!'} 

Simultaneously, we modify the Configurator object's properties by adding 

the ".html" renderer. 

if __name__ == '__main__': 

    with Configurator() as config: 



Pyramid - Python Web Framework 

 

37 

 

        config.include('pyramid_jinja2') 

        config.add_jinja2_renderer(".html") 

        config.add_route(hello, '/') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Template Context from matchdict 

As explained earlier, if the URL pattern in the route configuration consists 

of one or more placeholder parameters, their values from the request URL 

are passed along with the request as a matchdict object, which in turn can 

be passed as context data to the template to be rendered. 

For our next example, the hello.html – the jinja2 template remains the 

same. 

<html> 

  <body> 

    <h1>Hello, {{ name }}!</h1>    

  </body> 

</html> 

We know that the value for the context variable 'name' is passed by the 

view function. However, instead of passing a hardcoded value (as in the 

previous example), its value is fetched from the matchict object. This 

object is populated by the path parameters in the URL string.  

from pyramid.view import view_config 

 

@view_config(route_name='index', renderer='templates/hello.html') 

def index(request): 

    return {'name':request.matchdict['name']} 

 

 



Pyramid - Python Web Framework 

 

38 

 

The modified application code is given below: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config(route_name='index', renderer='templates/hello.html') 

def index(request): 

    return {'name':request.matchdict['name']} 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.include('pyramid_jinja2') 

        config.add_jinja2_renderer(".html") 

        config.add_route('index', '/{name}') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Start the server, open the browser and enter the URL 

http://localhost:6543/Tutorialspoint. The tailing string becomes the value 

of 'name' key in the matchdict. It is utilized by the jinja2 template and 

following output is rendered. 

 

http://localhost:6543/Tutorialspoint


Pyramid - Python Web Framework 

 

39 

 

Conditionals and Loops in Template 

The jinja2 template language allows conditional statements and looping 

constructs to be included in the HTML script. The jinja2 syntax for these 

programming elements is as follows: 

Conditionals 

{% if expr %} 

HTML 

{% else %} 

HTML 

{% endif %} 

Loop 

{% for var in iterable %} 

HTML 

{% endfor %} 

It can be seen that the jinja2 syntax is very much similar to Python's if and 

for statements. Except that, jinja2 doesn't use the indentations to mark the 

blocks. Instead, for each if there has to be an endif statement. Similarly, 

for each for statement, there has to be a endfor statement. 

Following example demonstrates the use of template conditional and loop 

statements. First, the Pyramid code uses a students as a list of dictionary 

objects, each dictionary having id, name and percentage of a student. This 

list object is passed as a context to the marklist.html template 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

students = [ 

    {"id": 1, "name": "Ravi", "percent": 75}, 



Pyramid - Python Web Framework 

 

40 

 

    {"id": 2, "name": "Mona", "percent": 80}, 

    {"id": 3, "name": "Mathews", "percent": 45}, 

] 

 

@view_config(route_name='index', 

renderer='templates/marklist.html') 

def index(request): 

    return {'students':students} 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.include('pyramid_jinja2') 

        config.add_jinja2_renderer(".html") 

        config.add_route('index', '/') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Save this program as marklist.py. Now, the following HTML script has to be 

save as marklist.html. It traverses the students list object received from 

the view function, and renders the student data in the form of a HTML table. 

The fourth column shows pass/fail result, using the jinja2 if statement 

syntax. 

<html> 

<body>   

<table border=1>   

    <thead>  <tr>   

        <th>Student ID</th>  <th>Student Name</th>   

        <th>percentage</th>    

        <th>Result</th>   



Pyramid - Python Web Framework 

 

41 

 

    </tr>   </thead>   

    <tbody>   

{% for Student in students %}   

    <tr> <td>{{ Student.id }}</td> <td>{{ Student.name }}</td>   

        <td>{{ Student.percent }}</td> 

        <td>   

            {% if Student.percent>=50 %} 

    Pass 

   {% else %} 

    Fail 

   {% endif %} 

        </td>  </tr>   

{% endfor %}   

    </tbody>   

</table>   

 </body>   

</html> 

Run the marklist.py code. The http://localhost:6543/ link renders the 

following tabular result: 

 

 

http://localhost:6543/


Pyramid - Python Web Framework 

 

42 

 

In this chapter, we shall see how Pyramid reads the data from HTML form. 

Let us save the following HTML script as myform.html. We shall use it for 

obtaining Template object and render it. 

<html> 

<body>   

<form method="POST" action="http://localhost:6543/students">   

<p>Student Id: <input type="text" name="id"/>  </p> 

<p>student Name: <input type="text" name="name"/>  </p> 

<p>Percentage: <input type="text" name="percent"/>  </p> 

<p><input type="submit" value="Submit"> </p> 

</body>   

</html> 

An "index" route added in Pyramid object's configuration is mapped to the 

following index() function, which renders the above HTML form: 

@view_config(route_name='index', 

renderer='templates/myform.html') 

def index(request): 

    return {} 

As we can see, the data entered by user is passed to /students URL by POST 

request. So, we shall add a 'students' route to match the /students pattern, 

and associate it with add() view function as follows: 

@view_config(route_name='students', 
renderer='templates/marklist.html') 

def add(request): 

    student={'id':request.params['id'], 
'name':request.params['name'], 

                                 
'percent':int(request.params['percent'])} 

9. Pyramid – HTML Form Template 



Pyramid - Python Web Framework 

 

43 

 

                                  

    students.append(student) 

    return {'students':students} 

The data sent by POST request is available in the HTTP request object in 

the form of request.params object. It is a dictionary of HTML form 

attributes and their values as entered by the user. This data is parsed and 

appended to students list of dictionary objects. The updated students object 

is passed to the marklist.html template as a context data. 

The marklist.html web template as the same as used in the previous 

example. It displays a table of student data along with the computed result 

column. 

<html> 

<body>   

<table border=1>   

    <thead>  <tr>   

        <th>Student ID</th>  <th>Student Name</th>   

        <th>percentage</th>    

        <th>Result</th>   

    </tr>   </thead>   

    <tbody>   

{% for Student in students %}   

    <tr> <td>{{ Student.id }}</td> <td>{{ Student.name }}</td>   

        <td>{{ Student.percent }}</td> 

        <td>   

            {% if Student.percent>=50 %} 

    Pass 

   {% else %} 

    Fail 

   {% endif %} 

        </td>  </tr>   

{% endfor %}   

    </tbody>   



Pyramid - Python Web Framework 

 

44 

 

</table>   

</body>   

</html> 

The complete code containing views for rendering the HTML form, parsing 

the form data and generating a page showing the students marklist table is 

given below: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

students = [ 

    {"id": 1, "name": "Ravi", "percent": 75}, 

    {"id": 2, "name": "Mona", "percent": 80}, 

    {"id": 3, "name": "Mathews", "percent": 45}, 

] 

 

@view_config(route_name='index', 
renderer='templates/myform.html') 

def index(request): 

    return {} 

@view_config(route_name='students', 
renderer='templates/marklist.html') 

def add(request): 

    student={'id':request.params['id'], 
'name':request.params['name'], 

                                 
'percent':int(request.params['percent'])} 

                                  

    students.append(student) 

    return {'students':students} 

 

if __name__ == '__main__': 



Pyramid - Python Web Framework 

 

45 

 

    with Configurator() as config: 

        config.include('pyramid_jinja2') 

        config.add_jinja2_renderer(".html") 

        config.add_route('index', '/') 

        config.add_route('students','/students') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

To start the server, run the above Python code from command line. In your 

browser, visit http://localhost:6543/ to get the form as shown below: 

 

Enter a sample data as shown and press submit button. The browser is 

directed to /students URL, which in turn invokes the add() view. The result 

is a table of marklist showing the newly entered data of a new student. 

 

http://localhost:6543/


Pyramid - Python Web Framework 

 

46 

 

Often it is required to include in the template response some resources that 

remain unchanged even if there is a certain dynamic data. Such resources 

are called static assets. Media files (.png, .jpg etc), JavaScript files to be 

used for executing some front end code, or stylesheets for formatting HTML 

(.css files) are the examples of static files. 

Pyramid serves these static assets from a designated directory in the 

server's filesystem to the client's browser. The add_static_view() method 

of the Configurator object defines the name of the route and path for the 

folder containing the static files such as images, JavaScript, and CSS files. 

As a convention, the 'static' directory is used to store the static assets and 

the add_static_view() is used as follows: 

config.add_static_view(name='static', path='static') 

Once the static route is defined, the path of static assets while using in 

HTML script can be obtained by request.static_url() method 

Static Image 

In the following example, Pyramid logo is to be rendered in the logo.html 

template. Hence, "pyramid.png" file is first placed in static folder. It is now 

available for using as src attribute of <img> tag in HTML code. 

<html> 

<body> 

<h1>Hello, {{ name }}. Welcome to Pyramid</h1> 

<img src="{{request.static_url('app:static/pyramid.png')}}"> 

</body> 

</html> 

The application code updates the configurator with add_static_view(), 

and defines index() view renders the above template. 

 

10. Pyramid – Static Assets 



Pyramid - Python Web Framework 

 

47 

 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config(route_name='index', renderer='templates/logo.html') 

 

def index(request): 

    return {'name':request.matchdict['name']} 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.include('pyramid_jinja2') 

        config.add_jinja2_renderer(".html") 

        config.add_route('index', '/{name}') 

        config.add_static_view(name='static', path='app:static') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Run the above code to start the server. Use http://localhost:6543/Guest as 

the URL in your browser. Here 'Guest' is the path parameter picked up by 

the view function in matchdict object and passed to the logo.html template 

as the context. The browser displays the Pyramid logo now. 

http://localhost:6543/Guest


Pyramid - Python Web Framework 

 

48 

 

 

Javascript as Static Asset 

Here is another example of static file. A JavaScript code hello.js contains 

a definition of myfunction() to be executed on the onload event in 

following HTML script (templates\hello.html) 

<html> 

    <head> 

 <script 
src="{{request.static_url('app:static/hello.js')}}"></script> 

    </head> 

<body onload="myFunction()"> 

 <div id="time" style="text-align:right; width="100%"></div> 

 <h1><div id="ttl">{{ name }}</div></h1> 

    </body> 

</html> 

The hello.js code saved in static folder is as follows: 

function myFunction() { 

  var today = new Date(); 

  var h = today.getHours(); 



Pyramid - Python Web Framework 

 

49 

 

  var m = today.getMinutes(); 

  var s = today.getSeconds(); 

  var msg=""; 

  if (h<12) 

  { 

   msg="Good Morning, "; 

  } 

  if (h>=12 && h<18) 

  { 

   msg="Good Afternoon, "; 

  } 

   if (h>=18) 

  { 

   msg="Good Evening, "; 

  } 

  var x=document.getElementById('ttl').innerHTML; 

  document.getElementById('ttl').innerHTML =  msg+x; 

  document.getElementById('time').innerHTML =  h + ":" + m + ":" + s; 

} 

The function detects the value of current time and assigns appropriate value 

to msg variable (good morning, good afternoon or good evening) 

depending on the time of the day. 

Save hello.js in static folder, hello.html in templates folder and restart 

the server. The browser should show the current time and corresponding 
message below it. 

 



Pyramid - Python Web Framework 

 

50 

 

The functionality of a view callable involves obtaining the request data from 

the WSGI environment and returning a certain HTTP response back to the 

client after processing. The view function receives the Request object as the 

argument.  

Normally this object is not instantiated by the user. Instead, it encapsulates 

the WSGI environ dictionary. This request object represents 

"pyramid.request.Request class." It possesses a number of attributes and 

methods, using which the request data is processed by the view function.  

Here are some of the attributes: 

 request.method: The HTTP request method used by the client to 

send the data, e.g., GET, POST 

 

 request.GET: This attribute is a multidict with all the variables in 

the query string. 

 

 request.POST: This attribute is available only if the request was a 

POST and it is a form submission. It is a multidict with all the 

variables in the request body.  

 

 request.params: A combined multidict of everything in 

request.GET and request.POST. 

 

 request.body: This attribute contains the entire request body as a 

string. This is useful when the request is a POST that is not a form 

submission, or a request like a PUT.  

 

 request.cookies: Contains all the cookies. 

 

 request.headers: A case-insensitive dictionary of all the HTTP 

headers. 

In addition to the above HTTP specific environment attributes, Pyramid also 

adds certain special attributes. 

 request.url: Returns the full request URL with query string, e.g., 

http://localhost:6543/app?name=Ravi  

 

 request.host: The host information in the URL, e.g., localhost 

 

11. Pyramid – Request Object 

http://localhost:6543/app?name=Ravi


Pyramid - Python Web Framework 

 

51 

 

 request.host_url: This attribute returns the URL with the host, 

e.g., http://localhost:6543/  

 

 request.application_url: The URL of the application (without 

PATH_INFO), e.g., http://localhost:6543/app  

 

 request.path_url: Contains the URL of the application including the 

PATH_INFO, e.g., http://localhost:66543/app  

 

 request.path: Returns The URL including PATH_INFO without the 

host , e.g., "/app" 

 

 request.path_qs: the query string in the URL including 

PATH_INFO, e.g., "/app?name=Ravi" 

 

 request.query_string: Only the query string in the URL, e.g., 

"name=Ravi" 

http://localhost:6543/
http://localhost:6543/app
http://localhost:66543/app


Pyramid - Python Web Framework 

 

52 

 

The Response class is defined in pyramid.response module. An object of 

this class is returned by the view callable. 

from pyramid.response import Response 

def hell(request): 

 return Response("Hello World") 

The response object contains a status code (default is 200 OK), a list of 

response headers and the response body. Most HTTP response headers are 

available as properties. Following attributes are available for the Response 

object: 

 response.content_type: The content type is a string such as – 
response.content_type = 'text/html'. 

 

 response.charset: It also informs encoding in response.text. 

 

 response.set_cookie: This attribute is used to set a cookie. The 

arguments needed to be given are name, value, and max_age. 

 

 response.delete_cookie: Delete a cookie from the client. 
Effectively it sets max_age to 0 and the cookie value to ''. 

The pyramid.httpexceptions module defines classes to handle error 

responses such as 404 Not Found.  

These classes are in fact subclasses of the Response class. One such class 

is "pyramid.httpexceptions.HTTPNotFound". Its typical use is as follows: 

from pyramid.httpexceptions import HTTPNotFound 

from pyramid.config import view_config 

@view_config(route='Hello') 

def hello(request): 

 response = HTTPNotFound("There is no such route defined") 

 return response 

 

12. Pyramid – Response Object 



Pyramid - Python Web Framework 

 

53 

 

We can use location property of Response class to redirect the client to 

another route. For example: 

view_config(route_name='add', request_method='POST')  

def add(request): 

    #add a new object 

    return HTTPFound(location='http://localhost:6543/') 

 



Pyramid - Python Web Framework 

 

54 

 

A session is a time interval between client logs into a server and it logs out 

of it. Session object is also a dictionary object containing key-value pairs of 

session variables and associated values. In Pyramid, it is available as an 

attribute of request object. 

In order to handle session mechanism, the Pyramid Application object must 

be configured with a session factory that returns the session object. Pyramid 

core provides a basic session factory, which uses cookies to store session 

information.  

Default Session Factory 

The pyramid.session module defines SignedCookieSessionFactory 

class. Its object needs a secret key for digitally signing the session cookie 

information. 

from pyramid.session import SignedCookieSessionFactory 

my_session_factory = SignedCookieSessionFactory('abcQWE123!@#') 

The set_session_factory() method of the Configurator class uses this 

factory object to set up the session. 

config.set_session_factory(my_session_factory) 

Once this is done, the session object is now available for implementation as 

request.session attribute. To add a session variable, use: 

request.session['user'] = 'Admin' 

To retrieve a session variable, use: 

user=request.session['user']  

To remove a session variable, use the pop() method. 

request.session.pop('user') 

13. Pyramid – Sessions 



Pyramid - Python Web Framework 

 

55 

 

Session Example 

Described below is the usage of session variable in a Pyramid application. 

First, the login route (associated with login() view function) brings up a login 

form on the browser. 

@view_config(route_name='login') 

def login(request): 

    html=""" 

<html> 

<body> 

<form action='/add'> 

Enter User name : 

<input type='text' name='user'> 

<input type='submit' value='submit'> 

</form> 

</body> 

</html> 

""" 

 return Response(html) 

The add() function reads the 'user' form attribute and uses its value to add 

a session variable. 

@view_config(route_name='addsession') 

def add(request): 

    request.session['user']=request.params['user'] 

    return Response("<h2>Session object added.</h2><br><h3><a 

href='/read'>click here</a></h3>") 

The read() view reads back the session variable data and displays a 

welcome message. 

@view_config(route_name='readsession') 

def read(request): 



Pyramid - Python Web Framework 

 

56 

 

    user=request.session['user'] 

    response="<h2>Welcome {} </h2>".format(user)+"<br><h3><a 

href='/logout'>Logout</a></h3>" 

    return Response(response) 

These views along with the session factory are added in the application 

configuration. 

config.set_session_factory(my_session_factory) 

config.add_route('login','/') 

config.add_route('logout','/logout') 

config.add_route('addsession', '/add') 

config.add_route('readsession', '/read') 

config.scan('session') 

The complete code is given below: 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

from pyramid.session import SignedCookieSessionFactory 

my_session_factory = SignedCookieSessionFactory('abcQWE123!@#') 

 

@view_config(route_name='login') 

def login(request): 

    html=""" 

<html> 

<body> 

<form action='/add'> 

Enter User name : 

<input type='text' name='user'> 



Pyramid - Python Web Framework 

 

57 

 

<input type='submit' value='submit'> 

</form> 

</body> 

</html> 

""" 

    return Response(html) 

 

@view_config(route_name='addsession') 

def add(request): 

    request.session['user']=request.params['user'] 

    return Response("<h2>Session object added.</h2><br><h3><a 

href='/read'>click here</a></h3>") 

 

@view_config(route_name='readsession') 

def read(request): 

    user=request.session['user'] 

    response="<h2>Welcome {} </h2>".format(user)+"<br><h3><a 

href='/logout'>Logout</a></h3>" 

    return Response(response) 

 

@view_config(route_name='logout') 

def logout(request): 

    request.session.pop('user') 

    response="<h2>You have been logged out </h2><br><h3><a 

href='/'>Login</a></h3>" 

    return Response(response) 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.set_session_factory(my_session_factory) 



Pyramid - Python Web Framework 

 

58 

 

        config.add_route('login','/') 

        config.add_route('logout','/logout') 

        config.add_route('addsession', '/add') 

        config.add_route('readsession', '/read') 

        config.scan('session') 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Save this script as main.py in a subfolder (called 'session') within the 

Pyramid virtual environment folder. Note that this subfolder must have an 

empty __init__.py file for it to be treated as a package. 

Run main.py and enter http://localhost:6543/ to open up the login form in 

the browser. 

 

Enter the user name and press the "submit" button. The given name is 

saved as a 'user' session variable. 

 

The 'click here' link reads back the session variable and displays welcome 

message. 

http://localhost:6543/


Pyramid - Python Web Framework 

 

59 

 

 

The logout link pops the session variable and takes the browser back to 

the login page. 

 



Pyramid - Python Web Framework 

 

60 

 

A Pyramid application emits various events during the course of its lifetime. 

Although these events need not be used up normally, slightly advanced 

operations can be performed by properly handling these events. 

An event broadcast by the Pyramid framework becomes usable only when 

you register it with a subscriber function. The emitted event must be used 

as the argument of the subscriber function. 

def mysubscriber(event): 

    print("new request") 

However, a subscriber function becomes operational only when it is added 

to the application's configuration with the help of add_subscriber() 

method as shown below: 

In the following snippet, the application is configured so that the subscriber 

function is invoked when it emits NewRequest object. 

from pyramid.events import NewRequest 

config.add_subscriber(mysubscriber, NewRequest) 

There is also a @subscriber() decorator for configuring the event. 

from pyramid.events import NewRequest 

from pyramid.events import subscriber 

 

@subscriber(NewRequest) 

def mysubscriber(event): 

    print ("new request") 

As with the decortive view configuration, here also the config.scan() must 
be performed for the decorator to be effective. 

As mentioned earlier, the Pyramid application emits a variety of event 

types. These event classes are available in pyramid.event module. They 
are listed below: 

14. Pyramid – Events 



Pyramid - Python Web Framework 

 

61 

 

 ApplicationCreated: This event is transmitted just when the 

config.make_wsgi_app() method of the Configurator class is called 

to return the WSGI application object. 

 

 NewRequest: An object of this event class is emitted every time 

the Pyramid application starts processing an incoming request. This 

object has a request attribute which is the request object as supplied 

by WSGI environ dictionary. 

 

 ContextFound: The application's router traverses all the routes and 

finds an appropriate match with the URL pattern. This is when the 

object of ContextFound class is instantiated. 

 

 BeforeTraversal: An instance of this class is emitted as an event 

after the Pyramid router has attempted to find a route object but 

before any traversal or view code is executed. 

 

 NewResponse: As the name suggests, this event is raised 

whenever any Pyramid view callable returns a response. This object 

has request and response attributes. 

 

 BeforeRender: An object of this type is transmitted as an event 

just before a renderer is invoked. The subscriber function to this 

event has access to the application's global data (which is in the form 

of a dict object) and can modify value of one or more keys.  

 



Pyramid - Python Web Framework 

 

62 

 

The mechanism of message flashing is used by web application frameworks 

to provide certain feedback to the user about his interaction with the 

application. The flashed messages are held in a queue by the session object.  

Flash messaging mechanism makes it possible to create a message in one 

view and render it in a view function called next. As in the previous section, 

we must enable the session factory first to be able to handle the session. 

To add a message in the message queue, use flash() method of the session 

object. 

request.session.flash('Hello World') 

The session has pop_flash() and peek_flash() methods. The pop_flash() 

method removes the last added message from the queue. The peek_flash() 

method returns true if the queue has a message, false if it is empty. 

Both these methods are used in a template web page to fetch one or 

messages from the queue and render it as a part of the response. 

Message Flashing Example 

The mechanism of message flashing is demonstrated by the example below. 

Here, the login() view code checks if it has been invoked by POST or GET 

method. If the method is GET, it renders the login form with username and 

password fields. The submitted form is submitted with POST method to the 

same URL. 

When the POST method is detected, the view further checks the validity of 

the inputs and flashes appropriate messages to the session queue. These 

error flash messages are extracted by the login template itself, whereas 

after the success flash message is flashed, the client is redirected to the 

index() view to render the index template. 

The two views in the application code are: 

@view_config(route_name='login', renderer='templates/login.html') 

def login(request): 

    if request.method == 'POST': 

15. Pyramid – Message Flashing 



Pyramid - Python Web Framework 

 

63 

 

        if request.POST['password']=='' or request.POST['username']=='': 

            request.session.flash('User name and password is 
required') 

            return HTTPFound(location=request.route_url('login')) 

        if len(request.POST['password'])in range(1,9): 

            request.session.flash('Weak password!') 

        if request.POST['username']not in ['admin', 'manager', 
'supervisor']: 

            request.session.flash('successfully logged in!') 

            return HTTPFound(location=request.route_url('index')) 

        else: 

            request.session.flash('Reserved user ID Forbidden!') 

            return HTTPFound(location=request.route_url('login')) 

    return {} 

 

@view_config(route_name='index', renderer='templates/index.html') 

def index(request): 

    return {} 

The login.html template has the following code: 

<!doctype html> 

<html> 

<head> 

<style> 

p {background-color:grey; font-size: 150%} 

</style> 

</head> 

<body> 

<h1>Pyramid Message Flashing Example</h1> 

{% if request.session.peek_flash()%} 

  <div id="flash"> 

    {% for message in request.session.pop_flash() %} 

 <p>{{ message }}</p> 



Pyramid - Python Web Framework 

 

64 

 

 {% endfor %} 

  

  </div> 

  {% endif %} 

<h3>Login Form</h3> 

<form action="" method="POST"> 

<dl> 

<dt>Username: 

<dd><input type="text" name="username"> 

<dt>Password: 

<dd><input type="password" name="password"> 

</dl> 

<input type="submit" value="Login"> 

</form> 

</body> 

</html> 

Before the login form is displayed, the jinja2 template code traverses through 
the message queue, pops each message in the <div id='flash'> section. 

Following is the script for index.html that flashes the success messages 
inserted by the login() view: 

<!doctype html> 

<html> 

<head> 

<style> 

p {background-color:grey; font-size: 150%} 

</style> 

</head> 

   <body> 

{% if request.session.peek_flash()%} 

  <div id="flash"> 

    {% for message in request.session.pop_flash() %} 

 <p>{{ message }}</p> 



Pyramid - Python Web Framework 

 

65 

 

 {% endfor %} 

 {% endif %} 

      <h1>Pyramid Message Flashing Example</h1> 

      <h3>Do you want to <a href = "/login"> 

         <b>log in?</b></a></h3> 

   </body> 

</html> 

The application code for this example is main.py 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

from pyramid.session import SignedCookieSessionFactory 

from pyramid.httpexceptions import HTTPFound 

 

my_session_factory = SignedCookieSessionFactory(' abcQWE123!@#') 

 

@view_config(route_name='login', renderer='templates/login.html') 

def login(request): 

    if request.method == 'POST': 

        if request.POST['password']=='' or request.POST['username']=='': 

            request.session.flash('User name and password is required') 

            return HTTPFound(location=request.route_url('login')) 

        if len(request.POST['password'])in range(1,9): 

            request.session.flash('Weak password!') 

        if request.POST['username']not in ['admin', 'manager', 
'supervisor']: 

            request.session.flash('successfully logged in!') 

            return HTTPFound(location=request.route_url('index')) 

        else: 

            request.session.flash('Reserved user ID Forbidden!') 

            return HTTPFound(location=request.route_url('login')) 



Pyramid - Python Web Framework 

 

66 

 

    return {} 

 

@view_config(route_name='index', renderer='templates/index.html') 

def index(request): 

    return {} 

     

if __name__ == '__main__': 

    with Configurator() as config: 

        config.set_session_factory(my_session_factory) 

        config.include('pyramid_jinja2') 

        config.add_jinja2_renderer(".html") 

        config.add_route('login','/login') 

        config.add_route('index','/') 

        config.scan('flash') 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

Save this program code as app.py in a flash subfolder in the virtual 

environment for Pyramid, putting a blank __init__.py in it. Store the two 

templates ("index.html" and "login.html") in flush\templates folder. 

Run the main.py and open the login form in the browser by clicking the 
http://localhost:6543/login link. 

 

Try entering one of the reserved usernames 'admin', 'manager', or 

'supervisor'. The error message will be flashed as shown below: 

http://localhost:6543/login


Pyramid - Python Web Framework 

 

67 

 

 

This time, enter acceptable credentials and see the result: 

 

 



Pyramid - Python Web Framework 

 

68 

 

In this chapter, we shall learn how to use a relational database as a backend 

with the Pyramid web application. Python can interact with almost every 

relational database using corresponding DB-API compatible connector 

modules or drivers. However, we shall use SQLAlchemy library as an 

interface between Python code and a database (we are going to use SQLite 

database as Python has in-built support for it). SQLAlchemy is a popular 

SQL toolkit and Object Relational Mapper. 

Object Relational Mapping is a programming technique for converting data 

between incompatible type systems in object-oriented programming 

languages. Usually, the type system used in an Object Oriented language 

like Python contains non-scalar types. However, data types in most of the 

database products such as Oracle, MySQL, etc., are of primitive types such 

as integers and strings. 

In an ORM system, each class maps to a table in the underlying database. 

Instead of writing tedious database interfacing code yourself, an ORM takes 

care of these issues for you while you can focus on programming the logics 

of the system. 

In order to use SQLALchemy, we need to first install the library using PIP 

installer. 

pip install sqlalchemy 

SQLAlchemy is designed to operate with a DBAPI implementation built for 

a particular database. It uses dialect system to communicate with various 

types of DBAPI implementations and databases. All dialects require that an 

appropriate DBAPI driver is installed.  

The following are the dialects included − 

 Firebird 

 Microsoft SQL Server 

 MySQL 

 Oracle 

 PostgreSQL 

 SQLite 

 Sybase 

16. Pyramid – Using SQLAlchemy 



Pyramid - Python Web Framework 

 

69 

 

Database Engine  

Since we are going to use SQLite database, we need to create a database 

engine for our database called test.db. Import create_engine() function 

from the sqlalchemy module. 

from sqlalchemy import create_engine 

from sqlalchemy.dialects.sqlite import * 

SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db" 

engine = create_engine(SQLALCHEMY_DATABASE_URL, connect_args = 
{"check_same_thread": False}) 

In order to interact with the database, we need to obtain its handle. A 

session object is the handle to database. Session class is defined using 

sessionmaker() – a configurable session factory method which is bound 
to the engine object. 

from sqlalchemy.orm import sessionmaker, Session 

session = sessionmaker(autocommit=False, autoflush=False, bind=engine) 

Next, we need a declarative base class that stores a catalog of classes and 

mapped tables in the Declarative system.  

from sqlalchemy.ext.declarative import declarative_base 

Base = declarative_base() 

Model Class 

Students, a subclass of Base, is mapped to a students table in the 

database. Attributes in the Students class correspond to the data types of 

the columns in the target table. Note that the id attribute corresponds to 
the primary key in the book table. 

class Students(Base): 

    __tablename__ = 'student' 

    id = Column(Integer, primary_key=True, nullable=False) 

    name = Column(String(63), unique=True) 

    marks = Column(Integer) 

Base.metadata.create_all(bind=engine) 



Pyramid - Python Web Framework 

 

70 

 

The create_all() method creates the corresponding tables in the database. 
It can be confirmed by using a SQLite Visual tool such as SQLiteStudio. 

 

We shall now define view functions for performing CRUD operations (i.e. 

add, display, modify and delete rows) on the student table in the above 

database. 

Add a New Student Record 

First, we shall create a HTML form template for the user to enter student 

data and define a view that renders the template. Here is the myform.html 

template 

<html> 

<body>   

<form method="POST" action="http://localhost:6543/add">   

<p>Student Id: <input type="text" name="id"/>  </p> 

<p>student Name: <input type="text" name="name"/>  </p> 

<p>Percentage: <input type="text" name="percent"/>  </p> 

<p><input type="submit" value="Submit"> </p> 



Pyramid - Python Web Framework 

 

71 

 

</body>   

</html> 

In the Pyramid application code, define the index() view function to render 

the above form. 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

 

@view_config(route_name='index', renderer='templates/myform.html') 

def index(request): 

    return {} 

In the application configuration, register the route with the "/new" pattern 

for this view as: 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.include('pyramid_jinja2') 

        config.add_jinja2_renderer(".html") 

        config.add_route('index', '/new') 

        config.scan() 

        app = config.make_wsgi_app() 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever() 

As the HTML form in the above template is submitted to /add URL with 

POST action, we need to map this URL to add route and register add() view 

that parses the form data into an object of Students class. This object is 

added to the database session and the operation is finalized by calling its 

commit() method. 

@view_config(route_name='add', request_method='POST')  



Pyramid - Python Web Framework 

 

72 

 

def add(request): 

    id=request.POST['id'] 

    name=request.POST['name'] 

    percent=int(request.POST['percent']) 

    student=Students(id=id, name=name, percent=percent)  

    session.add(student) 

    session.commit() 

    return HTTPFound(location='http://localhost:6543/') 

Make sure that the add route is added in the configuration, mapped to /add 

URL pattern. 

config.add_route('add','/add') 

If we start the server and open http://localhost:6543/new in the browser, 

the Entry form will be displayed as follows: 

 

Fill the form and press the "submit" button. The add() view will be called 

and a new record will be added in the students table. Repeat the process a 

couple of times to add a few records. Here is a sample data: 

http://localhost:6543/new


Pyramid - Python Web Framework 

 

73 

 

 

Show List of All Records 

All the objects of the Students model (corresponding to row in students 

table) are obtained by querying the model. 

rows = session.query(Students).all() 

Each row is converted into a dict object, all of them are appended to a list 

of dict objects, and returned as a context to the list.html template to be 

displayed in the form of HTML template. The process is performed by the 

showall() view function, associated with list route. 

@view_config(route_name='list', 

renderer='templates/marklist.html') 

def showall(request): 

    rows = session.query(Students).all() 

    students=[] 

    for row in rows: 

        students.append({"id":row.id, "name":row.name, 

"percent":row.percent}) 

    return{'students':students} 

The marklist.html template renders the Students list as a HTML table. Its 

HTML/jinja2 script is as follows: 



Pyramid - Python Web Framework 

 

74 

 

<html> 

<body>   

<table border=1>   

    <thead>  <tr>   

        <th>Student ID</th>   

  <th>Student Name</th>   

        <th>percentage</th>    

        <th>Edit</th>  

  <th>Delete</th>    

    </tr>   </thead>   

    <tbody>   

{% for Student in students %}   

    <tr>  

 <td>{{ Student.id }}</td> <td>{{ Student.name }}</td>   

    <td>{{ Student.percent }}</td> 

    <td><a href="/show/{{ Student.id }}">edit</a></td> 

 <td><a href="/delete/{{ Student.id }}">delete</a></td> 

   </tr>   

{% endfor %}   

    </tbody>   

</table>   

<h3><a href="http://localhost:6543/new">Add new</a></h3> 

 </body>   

</html> 

Add the list route in the configuration and register it with '/' URL. 

config.add_route('list', '/') 

Open http://localhost:6543/ in the browser after starting the server. The 

list of existing records in the students table will be displayed. 

http://localhost:6543/


Pyramid - Python Web Framework 

 

75 

 

 

Notice the hyperlinks in the last two columns. For example, the "edit" link 

before "id=1" points to http://localhost:6543/show/1. These links are 

intended to execute update and delete operations. 

Update Existing Record 

In the /show/1 URL, there is a trailing path parameter. It is mapped to 

'show' route in the configuration. 

config.add_route('show', '/show/{id}') 

This route invokes the show() function. It fetches the record corresponding 

to the given id parameter, populates the HTML form with its contents and 

lets the user to update values of name and/or percent fields. 

@view_config(route_name='show', 

renderer='templates/showform.html') 

def show(request): 

    id=request.matchdict['id'] 

    row = session.query(Students).filter(Students.id == 

id).first() 

    student={'id':row.id, 'name':row.name, 

'percent':row.percent} 

    return {'student':student} 

 

The HTML/jinja2 code of showform.html template is as follows: 

<html> 

http://localhost:6543/show/1


Pyramid - Python Web Framework 

 

76 

 

<body>   

<form method="POST" action="http://localhost:6543/update">   

<p>Student Id: <input type="text" name="id" 

value="{{ student.id }} " readonly/>  </p> 

<p>student Name: <input type="text" name="name" 

value="{{ student.name }}"/>  </p> 

<p>Percentage: <input type="text" name="percent" 

value="{{ student.percent }}"/>  </p> 

<p><input type="submit" value="Submit"> </p> 

</body>   

</html> 

Let us update the record with id=3. Click on corresponding Edit link to 

navigate to http://localhost:6543/show/3  

 

Change the value in marks text field and press submit. The form is 

redirected to /update URL and it invokes update() view. It fetches the 

submitted data and updates the corresponding object thereby the 

underlying row in students table is also updated. 

@view_config(route_name='update', request_method='POST') 

def update(request): 

    id=int(request.POST['id']) 

    student = session.query(Students).filter(Students.id == 

id).first() 

    student.percent=int(request.POST['percent']) 

    session.commit() 

http://localhost:6543/show/3


Pyramid - Python Web Framework 

 

77 

 

    return HTTPFound(location='http://localhost:6543/') 

The return statement redirects the browser back to the '/' URL, which points 

to the list() function and shows the updated marklist. 

 

Make sure that the update route as added to the configuration before 

running. 

config.add_route('update', '/update') 

Delete a Record 

To delete a record corresponding to a row in the marklist table, follow the 

Delete link in the last column. For example, clicking on Delete in 3rd row 

emits http://localhost:6543/delete/3 URL and invokes following view 

function: 

@view_config(route_name='delete', 

renderer='templates/deleted.html') 

def delete(request): 

    id=request.matchdict['id'] 

    row = session.query(Students).filter(Students.id == id).delete() 

    return {'message':'Redcord has been deleted'} 

The object corresponding to the path parameter parsed from the URL is 

deleted and the appropriate message is rendered by the following template 

– deleted.html: 

<html> 

http://localhost:6543/delete/3


Pyramid - Python Web Framework 

 

78 

 

<body> 

 <h3>{{ message}}</h3> 

 <br><br> 

 <a href="http://localhost:6543/">Click here to refresh 

the mark list</a> 

</body> 

</html> 

Obviously, the delete route has to be added in the application config 

registry. 

config.add_route('delete', '/delete/{id}') 

The result of record delete action is as shown below: 

 

Take the following steps to perform the above explained activity: 

1. Create a folder named as testapp in the Pyramid virtual 

environment 

 

2. Inside testapp, create the templates folder. 

 

3. Create a blank __init__.py inside testapp so that it becomes a 

package. 

 

4. Put marklist.html, myform.html, showform.html and deleted.html 

files in "testapp\templates" folder. Codes of these files have been 

given above. 

 

5. Save the following code as models.py in testapp. 



Pyramid - Python Web Framework 

 

79 

 

from sqlalchemy.dialects.sqlite import * 

from sqlalchemy.ext.declarative import declarative_base 

from sqlalchemy import create_engine 

from sqlalchemy.orm import sessionmaker 

from sqlalchemy.orm import Session 

from sqlalchemy import Column, Integer, String 

SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db" 

 

Base = declarative_base() 

 

class Students(Base): 

    __tablename__ = 'student' 

    id = Column(Integer, primary_key=True, nullable=False) 

    name = Column(String(63), unique=True) 

    percent = Column(Integer) 

 

def getsession():     

    engine = create_engine( 

        SQLALCHEMY_DATABASE_URL, 
connect_args={"check_same_thread": False} 

    ) 

 

    Base.metadata.create_all(bind=engine) 

    Session = sessionmaker(bind = engine) 

    session = Session() 

    return session 

6. Save the following code as views.py in testapp folder. 

from pyramid.response import Response 

from pyramid.view import view_config 

from pyramid.httpexceptions import HTTPFound 

from models import Students 

from main import session 



Pyramid - Python Web Framework 

 

80 

 

 

@view_config(route_name='list', 
renderer='templates/marklist.html') 

def showall(request): 

    rows = session.query(Students).all() 

    students=[] 

    for row in rows: 

        students.append({"id":row.id, "name":row.name, 
"percent":row.percent}) 

    return{'students':students} 

 

@view_config(route_name='index', renderer='templates/myform.html') 

def index(request): 

    return {} 

 

@view_config(route_name='add', request_method='POST')  

def add(request): 

    id=request.POST['id'] 

    name=request.POST['name'] 

    percent=int(request.POST['percent']) 

    student=Students(id=id, name=name, percent=percent)                                  

    session.add(student) 

    session.commit() 

    return HTTPFound(location='http://localhost:6543/') 

 

@view_config(route_name='update', request_method='POST') 

def update(request): 

    id=int(request.POST['id']) 

    student = session.query(Students).filter(Students.id == id).first() 

    student.percent=int(request.POST['percent']) 

    session.commit() 

    return HTTPFound(location='http://localhost:6543/') 

     



Pyramid - Python Web Framework 

 

81 

 

@view_config(route_name='show', 
renderer='templates/showform.html') 

def show(request): 

    id=request.matchdict['id'] 

    row = session.query(Students).filter(Students.id == id).first() 

    student={'id':row.id, 'name':row.name, 'percent':row.percent} 

    return {'student':student} 

 

@view_config(route_name='delete', renderer='templates/deleted.html') 

def delete(request): 

    id=request.matchdict['id'] 

    row = session.query(Students).filter(Students.id == id).delete() 

    return {'message':'Redcord has been deleted'} 

7. Save the following code as main.py in testapp folder. 

from wsgiref.simple_server import make_server 

from pyramid.config import Configurator 

from models import getsession 

session=getsession() 

 

if __name__ == '__main__': 

    with Configurator() as config: 

        config.include('pyramid_jinja2') 

        config.add_jinja2_renderer(".html") 

        config.add_route('list', '/') 

        config.add_route('index', '/new') 

        config.add_route('add','/add') 

        config.add_route('show', '/show/{id}') 

        config.add_route('update', '/update') 

        config.add_route('delete', '/delete/{id}') 

        config.scan('testapp') 

        app = config.make_wsgi_app() 



Pyramid - Python Web Framework 

 

82 

 

    server = make_server('0.0.0.0', 6543, app) 

    server.serve_forever()     

8. Run main.py from the command prompt. 

Python main.py 

9. Use http://localhost:6543/ URL in the browser window. A table with 

only the headings and no records will be displayed. 

 

10. Follow Add new link below the table to add records. 

 

11. Click the "Edit" link in the table to update a record. 

 

12. Clink the "Delete" link in the table to delete selected record. 

 

http://localhost:6543/


Pyramid - Python Web Framework 

 

83 

 

We have so far built the Pyramid application by manually performing the 

route configuration, adding the views and using the templates. 

Cookiecutter offers a convenient alternative to generate a Pyramid project 

structure. It is a command-line utility that uses certain predefined project 

templates. The project can then be fine-tuned to accommodate specific 

requirements that the user may have. 

The Python project created by Cookiecutter is a Python package. The default 

application logic can be further customized. The project structure so created 

is extremely extensible and is easy to distribute. 

The Cookiecutter utility is developed by Audrey Feldroy. It works on 

Python versions >=3.7. The project templates in Python, JavaScript, Ruby, 

CoffeeScript, languages or RST, Markdown, CSS, HTML scripts can be used 

to generate a project. Github hosts a number of pre-built project templates, 

any of which can be used. 

The project built from cookiecutter template is a cross-platform package. 

Cookiecutter project generation is completely automated and you don't 

have to write any code for it. Once the cookiecutter command is invoked, it 

reads the template being used and prompts the user to choose appropriate 

values for the settings parameters. 

To begin with, install Cookiecutter with PIP installer. 

pip install cookiecutter 

To verify if Cookiecutter is correctly installed, run 

>>> import cookiecutter 

>>> cookiecutter.__version__ 

'1.7.3' 

 

17. Pyramid – Cookiecutter 



Pyramid - Python Web Framework 

 

84 

 

It is assumed that a Pyramid virtual environment is up and running, and 

Cookiecutter is installed in it. The easiest way to create a Cookiecutter 

project is to use a pre-built starter template as per the following command: 

cookiecutter gh:Pylons/pyramid-cookiecutter-starter --checkout 

2.0-branch 

The template is downloaded and the user is asked about his choice of name 

of the project: 

project_name [Pyramid Scaffold]: testproj 

repo_name [testproj]: 

Then choose the template language. 

Select template_language: 

1 - jinja2 

2 - chameleon 

3 - mako 

Choose from 1, 2, 3 [1]: 1 

Since we are familiar with jinja2, give 1 as the choice. Next, use 

SQLALchemy as the backend. 

Select backend: 

1 - none 

2 - sqlalchemy 

3 - zodb 

Choose from 1, 2, 3 [1]: 2 

Inside the testproj folder, following file structure is created: 

│   development.ini 

│   MANIFEST.in 

│   production.ini 

18. Pyramid – Creating a Project 



Pyramid - Python Web Framework 

 

85 

 

│   pytest.ini 

│   README.txt 

│   setup.py 

│   testing.ini 

│ 

├───testproj 

│   │   pshell.py 

│   │   routes.py 

│   │   __init__.py 

│   │ 

│   ├───alembic 

│   │   │   env.py 

│   │   │   script.py.mako 

│   │   │ 

│   │   └───versions 

│   │           README.txt 

│   │ 

│   ├───models 

│   │       meta.py 

│   │       mymodel.py 

│   │       __init__.py 

│   │ 

│   ├───scripts 

│   │       initialize_db.py 

│   │       __init__.py 

│   │ 

│   ├───static 

│   │       pyramid-16x16.png 

│   │       pyramid.png 

│   │       theme.css 

│   │ 

│   ├───templates 

│   │       404.jinja2 

│   │       layout.jinja2 

│   │       mytemplate.jinja2 

│   │ 

│   └───views 

│           default.py 

│           notfound.py 

│           __init__.py 

│ 

└───tests 
        conftest.py 



Pyramid - Python Web Framework 

 

86 

 

        test_functional.py 
        test_views.py 
        __init__.py 

The outer testproj folder has an inner testproj package subfolder and 

tests package. The inner testproj subfolder is a package having models 
and scripts, subpackages, and static as well as templates folders. 

 Next, initialize and upgrade the database using Alembic. 

    # Generate your first revision. 

    alembic -c development.ini revision --autogenerate -m "init" 

    # Upgrade to that revision. 

    alembic -c development.ini upgrade head 

Alembic is a lightweight database migration tool for usage with the 

SQLAlchemy Database Toolkit for Python. The outer project folder will now 
show a testproj.sqlite database. 

The development.ini file provides a default data for the database. Populate 

the database with it by the following command. 

initialize_testproj_db development.ini 

The Cookiecutter utility also generates the test suite in the tests package. 
They are based on PyTest package. Go ahead and see if the tests pass. 

Pytest 

================ test session starts ====================== 

platform win32 -- Python 3.10.1, pytest-7.1.2, pluggy-1.0.0 

rootdir: F:\pyram-env\testproj, configfile: pytest.ini, 
testpaths: testproj, tests 

plugins: cov-3.0.0 

collected 5 items 

 

tests\test_functional.py ..                                        
[ 40%] 

tests\test_views.py ...                                            
[100%] 

=============== 5 passed, 20 warnings in 6.66s =============== 



Pyramid - Python Web Framework 

 

87 

 

Cookiecutter uses the Waitress server. The Pyramid application is served on 

localhost's port 6543 by following command: 

pserve development.ini 

Starting server in PID 67700. 

2022-06-19 23:43:51,308 INFO  [waitress:485][MainThread] 

Serving on http://[::1]:6543 

2022-06-19 23:43:51,308 INFO  [waitress:485][MainThread] 

Serving on http://127.0.0.1:6543 

Open the browser and visit http://localhost:6543/ in it. The homepage of 

the newly created project will be displayed as follows: 

 

Debug Toolbar 

You can find a smaller Pyramid logo at the top right of the homepage. Click 

on it to open a new tab and a debug toolbar that provides lots of useful 

information about the project.  

For example, the SQLAlchemy tab under the history heading shows the 

SQLAlchemy queries showing the structure of the model created from the 

default data in development.ini. 

http://127.0.0.1:6543/
http://localhost:6543/


Pyramid - Python Web Framework 

 

88 

 

 

The Global heading again shows tabs such as Introspection, Routes, etc. as 

shown below. Click the "Routes" tab to see the routes and their matching 

patterns defined in the application's configuration. 

 



Pyramid - Python Web Framework 

 

89 

 

As mentioned earlier, the outer testproj folder contains testproj and test 

packages. In addition, it has other files used to describe, run, and test the 

application. These files are: 

 MANIFEST.in contains list of files to be included in a source 

distribution of the package. 

 

 development.ini is a PasteDeploy configuration file that can be 

used to execute your application during development. 

 

 production.ini is a PasteDeploy configuration file that can be used 

to execute your application in a production configuration. 

 

 pytest.ini is a configuration file for running tests. 

 

 setup.py is the standard Setuptools setup.py file used to test and 

distribute the application.  

 

 testing.ini is a configuration file used to execute the application's 
tests. 

The ".ini" files are the configurations used by Cookiecutter utility to generate 

the Pyramid application structure. These filesuse a system called 

PasteDeploy, which has been developed by Ian Bicking. This library is 

installed automatically along with Pyramid. 

Although a Pyramid application can be developed without PasteDeploy 

support, it gives a standardized way of starting, debugging and testing the 

application. 

The predefined settings are read from the configuration files (with .ini 

extension). These files contain mainly the application configuration settings, 

server settings and logging settings. 

development.ini 

As shown earlier, the Pyramid application built with Cookiecutter is invoked 

by the following command: 

pserve development.ini 

19. Pyramid – Project Structure 



Pyramid - Python Web Framework 

 

90 

 

The development.ini contains the PasteDeploy configuration specifications 

of the application. The configuration specifications in this file are having 

various sections such as [app:main], [server:main], [loggers] etc.  

The most important section id [app:main]. It specifies the starting point of 

the application. 

[app:main] 

use = egg:testproj 

 

pyramid.reload_templates = true 

pyramid.debug_authorization = false 

pyramid.debug_notfound = false 

pyramid.debug_routematch = false 

pyramid.default_locale_name = en 

pyramid.includes = 

    pyramid_debugtoolbar 

 

sqlalchemy.url = sqlite:///%(here)s/testproj.sqlite 

 

retry.attempts = 3 

The very first entry "use = egg:testproj" indicates the name of the Pyramid 

WSGI application object main. It is declared in the __init__.py file of the 

textproj package (inside the testproj project folder). This section contains 

other startup time configuration settings. 

For instance, the "pyramid.includes" setting specifies the packages to be 

included in the runtime. In the above example, the debugtoolbar package 

is included so that the debug panel gets activated when the Pyramid logo is 

clicked. We have seen its functioning in the earlier section. 

We also see that the URL of the database to be used in this application has 

also been specified. 

The [server:main] section specifies the configuration of a WSGI server 

which listens on TCP port 6543. It is configured to listen on localhost only 

(127.0.0.1). 



Pyramid - Python Web Framework 

 

91 

 

[server:main] 

use = egg:waitress#main 

listen = localhost:6543 

Other various logging related sections use Python's logging library. These 

".ini" file sections are passed to the logging module's config file 

configuration engine. 

production.ini  

This file used to serve the application instead of the "development.ini" when 

the application is deployed in the production mode. Both these files are 

similar. However, in "production.ini", the debug toolbar is disabled, the 

reload options are disabled and turns off the debugging options. 

Here's a stripped-down version of typical "production.ini" file: 

[app:main] 

use = egg:testproj 

pyramid.reload_templates = false 

pyramid.debug_authorization = false 

pyramid.debug_notfound = false 

pyramid.debug_routematch = false 

pyramid.default_locale_name = en 

sqlalchemy.url = sqlite:///%(here)s/testproj.sqlite 

retry.attempts = 3 

[pshell] 

setup = testproj.pshell.setup 

[alembic] 

script_location = testproj/alembic 

file_template = %%(year)d%%(month).2d%%(day).2d_%%(rev)s 

[server:main] 

use = egg:waitress#main 

listen = *:6543 

[loggers] 



Pyramid - Python Web Framework 

 

92 

 

keys = root, testproj, sqlalchemy, alembic 

[handlers] 

keys = console 

[formatters] 

keys = generic 

[logger_root] 

level = WARN 

handlers = console 

[logger_testproj] 

level = WARN 

handlers = 

qualname = testproj 

[logger_sqlalchemy] 

level = WARN 

handlers = 

qualname = sqlalchemy.engine 

[logger_alembic] 

level = WARN 

handlers = 

qualname = alembic 

[handler_console] 

class = StreamHandler 

args = (sys.stderr,) 

level = NOTSET 

formatter = generic 

[formatter_generic] 

format = %(asctime)s %(levelname)-5.5s 
[%(name)s:%(lineno)s][%(threadName)s] %(message)s 

 



Pyramid - Python Web Framework 

 

93 

 

The Cookiecutter utility automatically creates a package folder inside the 

parent project folder of the same name. The package folder consists of the 

following files and subfolders. 

__init__.py 

A folder needs __init__.py file for it to be treated as a Python package. 

The testproj package also has this file, which essentially declares the 

Pyramid WSGI application project for the development.ini to use it as the 

entry point. 

The application object is returned by the main() function. It configures the 

application registry by including the template library chosen at the time of 

running cookiecutter, including the routes module and adding the views to 

the configurator by scanning the existing package. Following Python code 

is auto generated as __init__.py file. 

from pyramid.config import Configurator 

def main(global_config, **settings): 

    """ This function returns a Pyramid WSGI application. 

    """ 

    with Configurator(settings=settings) as config: 

        config.include('pyramid_jinja2') 

        config.include('.routes') 

        config.include('.models') 

        config.scan() 

    return config.make_wsgi_app() 

routes.py 

The Cookiecutter utility automatically generates a Python script having a 

function called includeme(). It adds a static route and a home route 

pointing to '/' URL pattern. 

20. Pyramid – Package Structure 



Pyramid - Python Web Framework 

 

94 

 

def includeme(config): 

    config.add_static_view('static', 'static', cache_max_age=3600) 

    config.add_route('home', '/') 

These routes are added to the application configuration by the main() 

function in __init__.py file explained above. 

Views Package 

The project package (in our case testproj package) contains this views 

subpackage -  a folder containing a blank __init__.py, a Python module 

called default.py that contains definition a view function named 

my_view(). It sends the name of the project as a context to a pre-built 

template mytemplate.jinja2 

from pyramid.view import view_config 

from pyramid.response import Response 

from sqlalchemy.exc import SQLAlchemyError 

from .. import models 

 

@view_config(route_name='home', 
renderer='testproj:templates/mytemplate.jinja2') 

def my_view(request): 

    try: 

        query = request.dbsession.query(models.MyModel) 

        one = query.filter(models.MyModel.name == 'one').one() 

    except SQLAlchemyError: 

        return Response(db_err_msg, content_type='text/plain', 
status=500) 

    return {'one': one, 'project': 'testproj'} 

 

db_err_msg = """\ 

Pyramid is having a problem using your SQL database.   

.... 

""" 



Pyramid - Python Web Framework 

 

95 

 

The default.py scripts also imports definition of mymodel in models 

subpackage. This views package also defines a notfound view in 

notfound.py file. 

from pyramid.view import notfound_view_config 

@notfound_view_config(renderer='testproj:templates/404.jinja2') 

def notfound_view(request): 

    request.response.status = 404 

    return {} 

static folder 

This folder under the testproj package folder contains Pyramid logo files 

and theme.CSS for the homepage. 

templates folder 

We know that the web templates need to be stored in templates folder. This 

subfolder contains jinja2 templates. Here we have a base template named 

as layout.jinja2 and it is inherited by mytemplate.jinja2 to be rendered 

by my_view() view function. 

{% extends "layout.jinja2" %} 

 

{% block content %} 

<div class="content"> 

  <h1><span class="font-semi-bold">Pyramid</span> <span 
class="smaller">Starter project</span></h1> 

  <p class="lead">Welcome to <span class="font-
normal">{{project}}</span>, a&nbsp;Pyramid application 
generated&nbsp;by<br><span class="font-
normal">Cookiecutter</span>.</p> 

</div> 

{% endblock content %} 



Pyramid - Python Web Framework 

 

96 

 

models Package 

This subpackage under the tesptproj package folder holds mymodel.py 

that has the definition of SQLAlchemy model named as MyModel. 

from sqlalchemy import ( 

    Column, 

    Index, 

    Integer, 

    Text, 

) 

 

from .meta import Base 

class MyModel(Base): 

    __tablename__ = 'models' 

    id = Column(Integer, primary_key=True) 

    name = Column(Text) 

    value = Column(Integer) 

Index('my_index', MyModel.name, unique=True, mysql_length=255) 

The meta.py declares an object of Declarative Base class in SQLAlchemy. 

from sqlalchemy.ext.declarative import declarative_base 

from sqlalchemy.schema import MetaData 

 

NAMING_CONVENTION = { 

    "ix": "ix_%(column_0_label)s", 

    "uq": "uq_%(table_name)s_%(column_0_name)s", 

    "ck": "ck_%(table_name)s_%(constraint_name)s", 

    "fk": "fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s", 

    "pk": "pk_%(table_name)s" 

} 

metadata = MetaData(naming_convention=NAMING_CONVENTION) 

Base = declarative_base(metadata=metadata) 



Pyramid - Python Web Framework 

 

97 

 

The Cookiecutter utility uses pre-defined project templates to 

auto-generate the project and package structure. For complex projects, it 

saves a lot of manual effort in properly organizing various project 

components.  

However, a Pyramid project can be built manually without having to use 

Cookiecutter. In this section, we shall see how a Pyramid project named 

Hello is built in following easy steps. 

setup.py 

Create a project directory within Pyramid virtual environment. 

md hello 

cd hello 

 and save the following script as setup.py 

from setuptools import setup 

 

requires = [ 

    'pyramid', 

    'waitress', 

] 

setup( 

    name='hello', 

    install_requires=requires, 

    entry_points={ 

        'paste.app_factory': [ 

            'main = hello:main' 

        ], 

    }, 

) 

21. Pyramid – Creating a Project Manually 



Pyramid - Python Web Framework 

 

98 

 

As mentioned earlier, this is a Setuptools setup file that defines 

requirements for installing dependencies for your package.  

Run the following command to install the project and generate the 'egg' in 

the name hello.egg-info. 

pip3 install -e . 

development.ini 

Pyramid uses PasteDeploy configuration file mainly to specify the main 

application object, and the server configuration. We are going to use the 

application object in the egg info of hello package, and the Waitress server, 

listening on port 5643 of the localhost. Hence, save the following snippet as 

development.ini file 

[app:main] 

use = egg:hello 

 

[server:main] 

use = egg:waitress#main 

listen = localhost:6543 

__init__.py 

Finally, the application code resides in this file which is also essential for the 

hello folder to be recognised as a package. 

The code is a basic Hello World Pyramid application code having 

hello_world() view. The main() function registers this view with hello 

route having '/' URL pattern, and returns the application object given by 

make_wsgi_app() method of Configurator. 

from pyramid.config import Configurator 

from pyramid.response import Response 

def hello_world(request): 

    return Response('<body><h1>Hello World!</h1></body>') 



Pyramid - Python Web Framework 

 

99 

 

def main(global_config, **settings): 

    config = Configurator(settings=settings) 

    config.add_route('hello', '/') 

    config.add_view(hello_world, route_name='hello') 

    return config.make_wsgi_app() 

Finally, serve the application with the help of pserve command. 

pserve development.ini --reload 

 



Pyramid - Python Web Framework 

 

100 

 

The Pyramid library has a scripts subpackage, and it contains a number of 

Python scripts that are made available to control and inspect a Pyramid 

application. These modules can be used both as an importable module as 

well as from command prompt. Hence, they are often called as command 

line scripts. 

These command line scripts are: 

 pserve: serves a web application that uses a PasteDeploy 

configuration file 

 

 pviews: Displaying Matching Views for a Given URL 

 

 pshell: The Interactive Shell 

 

 proutes: Displaying All Application Routes 

 

 ptweens: Displaying "Tweens" 

 

 prequest: Invoking a Request 

 

 pdistreport: Showing All Installed Distributions and Their Versions 

All these command line scripts use the PasteDeploy configuration file 

(development.ini). 

pserve 

This is the most important script. The Pyramid application configured in the 

"development.ini" [app:main] section is served with the help of the chosen 

server (Waitress) and the mentioned host and port (localhost:6543) 

Assuming that the Pyramid project (testproj) is created in the folder of the 

same name in the Pyramid virtual environment, the following command 

starts listening to incoming browser requests: 

Env>..\scripts\pserve development.ini 

The pserve module (as also the other Pyramid command-line scripts) can 

be run as an argument of Python interpreter in the command prompt. 

22. Pyramid – Command Line Pyramid 



Pyramid - Python Web Framework 

 

101 

 

Env>python -m pyramid.scripts.pserve development.ini 

Starting server in PID 1716. 

2022-06-23 14:13:51,492 INFO  [waitress:485][MainThread] 
Serving on http://[::1]:6543 

2022-06-23 14:13:51,492 INFO  [waitress:485][MainThread] 
Serving on http://127.0.0.1:6543 

To make pserve utility more flexible, the following command line 

parameters can be used: 

 config_uri: The URI to the configuration file. 

 

 -n <name>: Load the named application (default main) 

 

 -s <server_type>: Use the named server. 

 

 --server-name <section_name>: Use the named server as 

defined in the configuration file (default: main) 

 

 --reload: Use auto-restart file monitor 

 

 -b: Open a web browser to the server url. 

The application is served at http://localhost:6543 in which case, the access 

is restricted such that only a browser running on the same machine. If you 

want to let the other machines on the same network, then edit the 

"development.ini" file, and replace the listen value in the [server:main] 

section as shown below: 

[server:main] 

use = egg:waitress#main 

listen = *:6543 

The setting *:6543 is equivalent to 0.0.0.0:6543 [::]:6543, as a result, the 

application responds to requests on all IP addresses possessed by your 

system, not just requests to localhost. 

The --reload option in the pserve command line causes the application to 

be reloaded automatically whenever the running code is modified. 

Start the application with --reload option. 

 

pserve development.ini --reload 

http://127.0.0.1:6543/
http://localhost:6543/


Pyramid - Python Web Framework 

 

102 

 

Starting monitor for PID 36224. 

Starting server in PID 36224. 

Serving on http://localhost:6543 

Serving on http://localhost:6543 

If any change to the project's .py files or .ini files is made, the server restart 

automatically: 

testproj/development.ini changed; reloading ... 

Gracefully killing the server. 

Starting monitor for PID 36286. 

Starting server in PID 36286. 

Serving on http://localhost:6543 

Serving on http://localhost:6543 

pviews 

The pviews command line script is used in the command terminal window 

to print a summary of matching routes and views for a given URL. The 

pviews command accepts two arguments. The first argument is the path 

to your application's ".ini" file and section name inside it. This should be of 

the format config_file#section_name (default value is main). The second 

argument is the URL to test for matching views. 

Let us pviews command with the development.ini file in our testproj project 

built earlier with Cookiecutter. 

Env>..\scripts\pviews development.ini / 

 

URL = / 

 

    context: <pyramid.traversal.DefaultRootFactory object at 
0x000001DD39BF1DE0> 

    view name: 

 

http://localhost:6543/


Pyramid - Python Web Framework 

 

103 

 

    Route: 

    ------ 

    route name: home 

    route pattern: / 

    route path: / 

    subpath: 

 

        View: 

        ----- 

        testproj.views.default.my_view 

The output shows the requested URL at the top and below which all the 

matching views are displayed with their view configuration details. In this 

example only one view matches, so there is just a single View section.  

pshell 

The pshell script makes it possible to interact with the Pyramid application's 

environment from Python prompt. This shell uses the PasteDeploy 

configuration file i.e. development.ini as a command line argument (like the 

other Pyramid scripts) and opens up Python interactive shell.  

Env>..\scripts\pshell development.ini 

Python 3.10.1 (tags/v3.10.1:2cd268a, Dec  6 2021, 19:10:37) 

[MSC v.1929 64 bit (AMD64)] on win32 

Type "help" for more information. 

 

Environment: 

  app          The WSGI application. 

  dbsession    <sqlalchemy.orm.session.Session object at 
0x0000020E9F1452D0> 

  models       <module 'testproj.models' from 'f:\\pyram-

env\\testproj\\testproj\\models\\__init__.py'> 

  registry     Active Pyramid registry. 



Pyramid - Python Web Framework 

 

104 

 

  request      Active request object. 

  root         Root of the default resource tree. 

  root_factory Default root factory used to create `root`. 

  tm           Single-thread implementation of     

`~transaction.interfaces.ITransactionManager`. 

 

>>> 

The script reads the configuration and the objects declared in it are made 

available as Python objects to interact with. We can inspect their behaviour 

from the Python prompt. 

>>> root 

<pyramid.traversal.DefaultRootFactory object at 

0x0000020E9E2507F0> 

>>> registry 

<Registry testproj> 

The registry settings are read from "development.ini" into a dictionary. We 

can traverse its contents using the for loop: 

>>> for k,v in registry.settings.items(): 

...     print (k,":",v) 

... 

pyramid.reload_templates : True 

pyramid.debug_authorization : False 

pyramid.debug_notfound : False 

pyramid.debug_routematch : False 

pyramid.default_locale_name : en 

pyramid.includes : 

pyramid_debugtoolbar 

sqlalchemy.url : sqlite:///…\testproj/testproj.sqlite 

retry.attempts : 3 



Pyramid - Python Web Framework 

 

105 

 

tm.manager_hook : <function explicit_manager at 

0x000001D9E64E4550> 

It is even possible to interact with the database with the help of SQLAlchemy 

model declared in models.py. 

The application database is initialized in the beginning when we first 

complete the cookiecutter steps. We find a models table in the 

"testproj.sqlite" database with one record in it. 

 

We now access this table from the Python prompt as under: 

>>> m=models.MyModel 

 

>>> obj=dbsession.query(m).get(1) 

>>> obj 

<testproj.models.mymodel.MyModel object at 0x0000020E9FD96DA0> 

>>> obj.name 

'one' 

Let us adda new row in the models table. First declare an object of the 

MyModel class, and add it in the dbsession. 

>>> tm.begin() 

 



Pyramid - Python Web Framework 

 

106 

 

>>> obj=models.MyModel(id=2, name='two', value=2) 

>>> dbsession.add(obj) 

>>> tm.commit() 

Pyramid uses a transaction manger object tm which is declared in 

pyramid_tm package. To confirm that a new record is added, retrieve it 

back. 

>>> obj=dbsession.query(models.MyModel).get(2) 

>>> obj.name 

'two' 

This can also be confirmed by actually looking at the models table of the 

database in a SQLite GUI tool. 

 

prequest 

The prequest utility lets you to test the response of a URL pattern without 

actually starting the server. The command needs the configuration file and 

the URL path as the command line arguments. For example: 

Env>prequest development.ini / 

The command produces the raw HTML response of the Cookiecutter 

homepage that we have seen earlier. 



Pyramid - Python Web Framework 

 

107 

 

There are a couple of command line switches that can be used. The -d option 

displays the status and headers returned by the server. To override the 

default GET request method, we can use -m option. 

proutes 

This command line Pyramid script displays all the routes added to your 

application's registry. It accepts just one argument i.e. the configuration file 

(development.ini) 

Following route configuration of the testproj package is displayed by the 

proutes command: 

Env>proutes development.ini 

Name                         Pattern                            View                              

----                         -------                            ----                              

__static/                    /static/*subpath                   testproj:static/                   

home                         /                                  

testproj.views.default.my_view     

debugtoolbar                 /_debug_toolbar/*subpath           <unknown>                          

__/_debug_toolbar/static/    /_debug_toolbar/static/*subpath    

pyramid_debugtoolbar:static/ 

 



Pyramid - Python Web Framework 

 

108 

 

Writing test scripts which ensure that your code works correctly is 

considered as a good programming practice. Python ecosystem had a 

number of testing frameworks, including unittest which is bundled in the 

standard library. Pytest is a popular testing library. It is a preferred library 

for Pyramid projects. 

We shall use the hello package that we developed earlier while 

demonstrating the use of PasteDeploy configuration. 

First, ensure that the Pyramid environment has PyTest package installed. 

pip3 install pytest 

Open the setup.py file in hello package and modify it by adding the lines 
shown in bold. 

from setuptools import setup 

 

requires = [ 

    'pyramid', 

    'waitress', 

] 

dev_requires = ['pytest',] 

setup( 

    name='hello', 

    install_requires=requires, 

    extras_require={ 

        'dev': dev_requires, 

    }, 

    entry_points={ 

        'paste.app_factory': [ 

            'main = hello:main' 

        ], 

    }, 

23. Pyramid – Testing 



Pyramid - Python Web Framework 

 

109 

 

) 

Here, Pytest is added as the project dependency whenever it is installed (or 

reinstalled) using following command: 

pip3 install -e ".[dev] 

Store the following Python code as testing.py in hello package. 

import unittest 

from pyramid import testing 

class HelloTests(unittest.TestCase): 

 

    def test_hello_world(self): 

        from . import hello_world 

        request = testing.DummyRequest() 

        response = hello_world(request) 

        self.assertEqual(response.status_code, 200) 

To run the tests, use following Pytest command. The output of the test is 

shown below: 

Env\hello>pytest tests.py 

========================== test session starts 

========================== 

platform win32 -- Python 3.10.1, pytest-7.1.2, pluggy-1.0.0 

rootdir: E:\tp-pyramid\hello 

collected 1 item 

 

tests.py .                                                         

[100%] 

 

=========================== 1 passed in 1.12s 

=========================== 



Pyramid - Python Web Framework 

 

110 

 

To check if the test fails, induce an error in the test function and run again. 

(tp-pyramid) E:\tp-pyramid\hello>pytest tests.py 

========================== test session starts 

========================== 

collected 1 item 

 

tests.py F                                                         

[100%] 

=============================== FAILURES 

================================ 

______________________ HelloTests.test_hello_world 

______________________ 

self = <hello.tests.HelloTests testMethod=test_hello_world> 

    def test_hello_world(self): 

        from . import hello_world 

        request = testing.DummyRequest() 

        response = hello_world(request) 

>       self.assertEqual(response.status_code, 404) 

E       AssertionError: 200 != 404 

 

tests.py:13: AssertionError 

======================== short test summary info 

======================== 

FAILED tests.py::HelloTests::test_hello_world - 

AssertionError: 200 != 404 

=========================== 1 failed in 1.53s 

=========================== 

Functional Testing 

Although Unit tests are popularly used in test-driven development 

(TDD)approach, for web applications, WebTest is a Python package that 



Pyramid - Python Web Framework 

 

111 

 

does functional testing. We can simulate a full HTTP request against a WSGI 

application, then test the information in the response. 

Let us use the hello project that we had used in the earlier example. Open 

the setup.py and add WebTest as the project dependency.  

from setuptools import setup 

 

requires = [ 

    'pyramid', 

    'waitress', 

] 

dev_requires = ['pytest','webtest',] 

setup( 

    name='hello', 

    install_requires=requires, 

    extras_require={ 

        'dev': dev_requires, 

    }, 

    entry_points={ 

        'paste.app_factory': [ 

            'main = hello:main' 

        ], 

    }, 

) 

Reinstall the hello package and its new dependency for development mode. 

Env\hello>..\scripts\pip3 install -e ".[dev]" 

 

Include a functional test in tests.py file 

import unittest 



Pyramid - Python Web Framework 

 

112 

 

from pyramid import testing 

 

class HelloTests(unittest.TestCase): 

 

    def test_hello_world(self): 

        from . import hello_world 

 

        request = testing.DummyRequest() 

        response = hello_world(request) 

        self.assertEqual(response.status_code, 200) 

 

class HelloFunctionalTests(unittest.TestCase): 

    def setUp(self): 

        from . import main 

        app = main({}) 

        from webtest import TestApp 

 

        self.testapp = TestApp(app) 

 

    def test_hello_world(self): 

        res = self.testapp.get('/', status=200) 

        self.assertIn(b'<h1>Hello World!</h1>', res.body) 

Finally run Pytest as per the following command: 

Env\hello>pytest tests.py 

========================== test session starts 

========================== 

platform win32 -- Python 3.10.1, pytest-7.1.2, pluggy-1.0.0 

rootdir: E:\tp-pyramid\hello 

collected 2 items 



Pyramid - Python Web Framework 

 

113 

 

 

tests.py ..                                                        

[100%] 

 

=========================== 2 passed in 2.37s 

=========================== 

Tests in Cookiecutter Project 

The CookieCutter utility auto-generates the tests package containing 

functional tests and unit tests. We had earlier used Cookiecutter to build 

Pyramid project named testproj. In this project, we find tests folder.  

The test_functional py contains the following test functions: 

from testproj import models 

 

def test_my_view_success(testapp, dbsession): 

    model = models.MyModel(name='one', value=55) 

    dbsession.add(model) 

    dbsession.flush() 

    res = testapp.get('/', status=200) 

    assert res.body 

 

def test_notfound(testapp): 

    res = testapp.get('/badurl', status=404) 

    assert res.status_code == 404 

The test_views.py defines following test functions to test the views: 

from testproj import models 

from testproj.views.default import my_view 

from testproj.views.notfound import notfound_view 

 

def test_my_view_failure(app_request): 



Pyramid - Python Web Framework 

 

114 

 

    info = my_view(app_request) 

    assert info.status_int == 500 

 

def test_my_view_success(app_request, dbsession): 

    model = models.MyModel(name='one', value=55) 

    dbsession.add(model) 

    dbsession.flush() 

    info = my_view(app_request) 

    assert app_request.response.status_int == 200 

    assert info['one'].name == 'one' 

    assert info['project'] == 'testproj' 

 

def test_notfound_view(app_request): 

    info = notfound_view(app_request) 

    assert app_request.response.status_int == 404 

    assert info == {} 

These tests are run by the following command: 

Env\testproj>Pytest 

========================== test session starts 

========================== 

platform win32 -- Python 3.10.1, pytest-7.1.2, pluggy-1.0.0 

rootdir: Env\testproj, configfile: pytest.ini, testpaths: 

testproj, tests 

plugins: cov-3.0.0 

collected 5 items 

 

tests\test_functional.py ..                                        

[ 40%] 

tests\test_views.py ...                                            

[100%] 



Pyramid - Python Web Framework 

 

115 

 

=============== 5 passed, 20 warnings in 6.66s =============== 

 



Pyramid - Python Web Framework 

 

116 

 

In order to collect useful information about the application, Pyramid uses 

the logging module from Python's standard library. It proves useful in 

development as well as production mode to detect problems if any, during 

the running of the application. The application log can include your own 

messages integrated with messages from third-party modules. 

The logged messages have following predefined types (in the order of 

decreasing severity): 

 CRITICAL 

 ERROR 

 WARNING 

 INFO 

 DEBUG 

 NOTSET 

By default, he logging messages are redirected to sys.stderr stream. To 

start collecting logging messages, we need to declare a Logger object. 

import logging 

log = logging.getLogger(__name__) 

Log messages can now be generated with logger methods corresponding to 

the desired logging levels. To generate a message which can prove useful 

for debugging the application, use log.debug() message with appropriate 

message string. 

A Pyramid application based on PasteDeploy configuration makes it very 

easy to enable incorporate logging support. The PasteDEploy files 

(development.ini as well as production.ini) use the ConfigParser format 

used in the logging module's configuration parameters. The logging related 

sections in development.ini are passed to the logging module's 

configuration process when it is invoked by pserve command. 

Various logger sections in the configuraton file specify the keys, formats 

and the logger levels for the application objects.  

Following logging related sections are declared in a typical 

"development.ini" file: 

24. Pyramid – Logging 



Pyramid - Python Web Framework 

 

117 

 

# Begin logging configuration 

[loggers] 

keys = root, hello 

[logger_hello] 

level = DEBUG 

handlers = 

qualname = hello 

[handlers] 

keys = console 

[formatters] 

keys = generic 

[logger_root] 

#level = INFO 

level=DEBUG 

handlers = console 

[handler_console] 

class = StreamHandler 

args = (sys.stderr,) 

level = NOTSET 

formatter = generic 

[formatter_generic] 

format = %(asctime)s %(levelname)-5.5s 

[%(name)s][%(threadName)s] %(message)s 

# End logging configuration 

Let us add these sections in the development.ini file of our Hello 
application in the previous chapter. 

Next, declare the Logger object and put a debug message in the 

hello_world() few function. Here's the __init__.py code: 

 



Pyramid - Python Web Framework 

 

118 

 

from pyramid.config import Configurator 

from pyramid.response import Response 

from pyramid.view import view_config 

import logging 

 

log = logging.getLogger(__name__) 

 

from pyramid.renderers import render_to_response 

 

def hello_world(request): 

    log.debug('In hello view') 

    return render_to_response('templates/hello.html', 

{'name':request.matchdict['name']}, 

                              request=request) 

 

def main(global_config, **settings): 

    config = Configurator(settings=settings) 

    config.include('pyramid_jinja2') 

    config.add_jinja2_renderer(".html") 

    config.add_route('hello', '/{name}') 

    config.add_view(hello_world, route_name='hello') 

    return config.make_wsgi_app() 

The hello_world() view renders the following hello.html template: 

<html> 

  <body> 

    <h1>Hello, {{ name }}!</h1>    

  </body> 

</html> 

Run the application as usual: 

pserve development.ini 



Pyramid - Python Web Framework 

 

119 

 

When http://localhost:6543/Tutorialpoint URL is entered in the browser, the 

command window echoes following debug message: 

Starting monitor for PID 11176. 

Starting server in PID 8472. 

2022-06-26 01:22:47,032 INFO  [waitress][MainThread] Serving 
on http://[::1]:6543 

2022-06-26 01:22:47,032 INFO  [waitress][MainThread] Serving 
on http://127.0.0.1:6543 

2022-06-26 01:22:47,418 DEBUG [hello][waitress-1] In hello view 

Since the debug toolbar is enabled in the configuration, it is displayed in the 

browser: 

 

The debug message is also displayed on the logging tab of the debug toolbar 
as shown below: 

 

http://localhost:6543/Tutorialpoint


Pyramid - Python Web Framework 

 

120 

 

Pyramid's declarative security system determines the identity of the current 

user and verifies if the user has access to certain resources. The security 

policy can prevent the user from invoking a view. Before any view is 

invoked, the authorization system uses the credentials in the request to 

determine if access will be allowed. 

The security policy is defined as a class that controls the user access with 

the help of following methods defined in pyramid.security module: 

 forget(request): This method returns header tuples suitable for 

'forgetting' the set of credentials possessed by the currently 

authenticated user. It is generally used within the body of a view 

function. 

 

 remember(request, userid): This method returns a sequence of 

header tuples on the request's response. They are suitable for 

'remembering' a set of credentials such as userid using the current 

security policy. Common usage might look like so within the body of 

a view function. 

The authenticated user's access is controlled by the objects of Allowed and 

Denied classes in this module. 

To implement the functionality of identity, remember and forget 

mechanism, Pyramid provides the following helper classes defined in the 

pyramid.authentication module: 

 SessionAuthenticationHelper: Store the userid in the session. 

 

 AuthTktCookieHelper: Store the userid with an "auth ticket" 

cookie. 

We can also use extract_http_basic_credentials() function to retrieve 

user credentials using HTTP Basic Auth. 

To retrieve the userid from REMOTE_USER in the WSGI environment, the 

request.environ.get('REMOTE_USER') can be used. 

Let us now learn how to implement the security policy with the help of 

following example. The "development.ini" for this example is as follows: 

25. Pyramid – Security 



Pyramid - Python Web Framework 

 

121 

 

[app:main] 

use = egg:tutorial 

pyramid.reload_templates = true 

pyramid.includes = 

    pyramid_debugtoolbar 

hello.secret = a12b 

 

[server:main] 

use = egg:waitress#main 

listen = localhost:6543 

We then write the security policy class in the following Python code saved 

as security.py: 

from pyramid.authentication import AuthTktCookieHelper 

USERS = {'admin': 'admin', 'manager': 'manager'} 

class SecurityPolicy: 

    def __init__(self, secret): 

        self.authtkt = AuthTktCookieHelper(secret=secret) 

 

    def identity(self, request): 

        identity = self.authtkt.identify(request) 

        if identity is not None and identity['userid'] in USERS: 

            return identity 

 

    def authenticated_userid(self, request): 

        identity = self.identity(request) 

        if identity is not None: 

            return identity['userid'] 

 

    def remember(self, request, userid, **kw): 



Pyramid - Python Web Framework 

 

122 

 

        return self.authtkt.remember(request, userid, **kw) 

 

    def forget(self, request, **kw): 

        return self.authtkt.forget(request, **kw) 

The __init__.py file in our package folder defines following configuration. 

The security policy class defined above is added in the configuration with 

set_security_policy() method of Configurator class. Three routes – 

home, login and logout – are added to the configuration. 

from pyramid.config import Configurator 

from .security import SecurityPolicy 

 

def main(global_config, **settings): 

    config = Configurator(settings=settings) 

    config.include('pyramid_chameleon') 

    config.set_security_policy( 

        SecurityPolicy( 

            secret=settings['hello.secret'], 

        ), 

    ) 

 

    config.add_route('home', '/') 

    config.add_route('login', '/login') 

    config.add_route('logout', '/logout') 

    config.scan('.views') 

    return config.make_wsgi_app() 

Three views corresponding to the above routes are defined in views.py. 

from pyramid.httpexceptions import HTTPFound 

from pyramid.security import remember, forget 

 

from pyramid.view import view_config, view_defaults 

 



Pyramid - Python Web Framework 

 

123 

 

from .security import  USERS 

 

@view_defaults(renderer='home.pt') 

class HelloViews: 

    def __init__(self, request): 

        self.request = request 

        self.logged_in = request.authenticated_userid 

 

    @view_config(route_name='home') 

    def home(self): 

        return {'name': 'Welcome'} 

 

    @view_config(route_name='login', renderer='login.pt') 

    def login(self): 

        request = self.request 

        login_url = request.route_url('login') 

        referrer = request.url 

        if referrer == login_url: 

            referrer = '/'  

        came_from = request.params.get('came_from', referrer) 

        message = '' 

        login = '' 

        password = '' 

        if 'form.submitted' in request.params: 

            login = request.params['login'] 

            password = request.params['password'] 

            pw = USERS.get(login) 

            if pw == password: 

                headers = remember(request, login) 

                return HTTPFound(location=came_from, 

                                 headers=headers) 

            message = 'Failed login' 



Pyramid - Python Web Framework 

 

124 

 

 

        return dict( 

            name='Login', message=message, 

            url=request.application_url + '/login', 

            came_from=came_from, 

            login=login, password=password,) 

 

    @view_config(route_name='logout') 

    def logout(self): 

        request = self.request 

        headers = forget(request) 

        url = request.route_url('home') 

        return HTTPFound(location=url, headers=headers) 

The login view renders the login form. When the user Id and password 

entered by the user are verified against the list of USERS, the details are 

'remembered'. On the other hand, the logout view releases these details by 

'forgetting'. 

The home view renders the following chameleon template - home.pt 

<!DOCTYPE html> 

<html lang="en"> 

<body> 

<div> 

    <a tal:condition="view.logged_in is None" 

            href="${request.application_url}/login">Log In</a> 

    <a tal:condition="view.logged_in is not None" 

            

href="${request.application_url}/logout">Logout</a> 

</div> 

<h1>Hello.  ${name}</h1> 

</body> 

</html> 



Pyramid - Python Web Framework 

 

125 

 

Following is the chameleon template login.pt for login view. 

<!DOCTYPE html> 

<html lang="en"> 

<body> 

<h1>Login</h1> 

<span tal:replace="message"/> 

 

<form action="${url}" method="post"> 

    <input type="hidden" name="came_from" 

value="${came_from}"/> 

    <label for="login">Username</label> 

    <input type="text" id="login" name="login" 

value="${login}"/><br/> 

    <label for="password">Password</label> 

    <input type="password" id="password" name="password"  

           value="${password}"/><br/> 

    <input type="submit" name="form.submitted" 

           value="Log In"/> 

</form> 

</body> 

</html> 

The development.ini and setup.py are placed in the outer project folder, 

while, the __init__.py, views.py, security.py and the templates 

home.pt as well as login.pt should be saved under the package folder 

named hello. 

Install the package with the following command: 

Env\hello>pip3 install -e . 

Start the server with the pserve utility. 

pserve development.ini 



Pyramid - Python Web Framework 

 

126 

 

Open the browser and visit http://localhost:6543/ link. 

 

Click the "Log In" link to open the login form: 

 

The home view page comes back with the link changed to logout as the 

credentials are remembered. 

http://localhost:6543/


Pyramid - Python Web Framework 

 

127 

 

 

Clicking the "logout" link will result in forgetting the credentials and the 

default home page will be shown. 

 



Pyramid - Python Web Framework 

 

128 

 

The examples of Pyramid applications developed so far in this tutorial have 

been executed on the local machine. To make it accessible publicly, it must 

be deployed on a Production server capable of WSGI standards. 

Many WSGI compatible http servers are available for this purpose. For 

example: 

 waitress 

 paste.httpserver 

 CherryPy 

 uWSGI 

 gevent 

 mod_wsgi 

We have discussed how we can use Waitress server to host a Pyramid 

application. It can be served on ports 80 (HTTP) and 443 (HTTPS) of a 

machine having a public IP address.  

mod_wsgi 

Apache server is a popular open source HTTP server software, distributed 

by Apache Software Foundation. It powers most of the web servers across 

internet. The mod_wsgi (developed by Graham Dumpleton) is an 

Apache module that provides a WSGI interface for deploying Python based 

web applications on Apache. 

In this section, the step by step procedure to deploy a Pyramid application 

on the Apache server is explained. Here, we'll use XAMPP, a popular open 

source Apache distribution. It can be downloaded from 

https://www.apachefriends.org/download.html. 

The mod_wsgi module is installed with PIP installer. Before installing, set 

the MOD_WSGI_APACHE_ROOTDIR environment variable to the directory 

in which Apache executable is located. 

C:\Python310\Scripts>set 

MOD_WSGI_APACHE_ROOTDIR=C:/xampp/apache 

C:\Python310\Scripts>pip install mod_wsgi 

26. Pyramid – Deployment 

https://www.apachefriends.org/download.html


Pyramid - Python Web Framework 

 

129 

 

Next, run the following command in the command terminal. 

C:\Python310\Scripts>mod_wsgi-express module-config 

LoadFile "C:/Python310/python310.dll" 

LoadModule wsgi_module "C:/Python310/lib/site-

packages/mod_wsgi/server/mod_wsgi.cp310-win_amd64.pyd" 

WSGIPythonHome "C:/Python310" 

These are mod_wsgi module settings to be incorporated Apache's 

configuration file. Open httpd.conf file of your XAMPP installation and copy 

the output of the above command line in it. 

Next, create a virtual host configuration for our application. Apache stores 

virtual host information in httpd-vhosts.conf file which is found in 

C:\XAMPP\Apache\conf\extra\ folder. Open the file and add following lines 

in it: 

<VirtualHost *> 

ServerName localhost:6543 

WSGIScriptAlias / e:/pyramid-env/hello/production.ini 

<Directory e:/pyramid-env/hello> 

        Order deny,allow 

        Allow from all 

        Require all granted 

</Directory> 

</VirtualHost> 

Here, it is assumed that a hello Pyramid project is built using the 

Cookiecutter utility. The PasteDeploy configuration file to be used in 

production environment is used here. 

This virtual host configuration needs to be incorporated in Apache's 

httpd.conf file. This is done by adding following lines in it: 

# Virtual hosts 

 Include conf/extra/httpd-vhosts.conf 



Pyramid - Python Web Framework 

 

130 

 

We now have to save the following code as pyramid.wsgi file that returns 

the Pyramid WSGI application object. 

from pyramid.paster import get_app, setup_logging 

ini_path = 'e:/pyramid-env/hello/production.ini' 

setup_logging(ini_path) 

application = get_app(ini_path, 'main') 

After performing the above mentioned procedure, restart the XAMPP server 

and we should be able to run the Pyramid application on the Apache server. 

Deploy on Uvicorn 

 Uvicorn is an ASGI compatible server (ASGI stands for Asynchronous 

Gateway Interface). Since Pyramid is a WSGI based web framework, we 

need to convert the WSGI application object to ASGI object, with the help 

of WsgiToAsgi() function defined in asgiref.wsgi module. 

from asgiref.wsgi import WsgiToAsgi 

from pyramid.config import Configurator 

from pyramid.response import Response 

 

def hello_world(request): 

    return Response("Hello") 

 

with Configurator() as config: 

    config.add_route("hello", "/") 

    config.add_view(hello_world, route_name="hello") 

    wsgi_app = config.make_wsgi_app() 

 

app = WsgiToAsgi(wsgi_app) 

Save the above code as app.py. Install Uvicorn with pip utility 

pip3 install uvicorn 



Pyramid - Python Web Framework 

 

131 

 

Run the Pyramid application in ASGI mode. 

uvicorn app:app 

Similarly, it can be served using daphne server. 

daphne app:app 

 


