
Python - Object Oriented

Python has been an object-oriented language since it existed. Because of

this, creating and using classes and objects are downright easy. This chapter

helps you become an expert in using Python's object-oriented programming

support.

If you do not have any previous experience with object-oriented (OO)

programming, you may want to consult an introductory course on it or at

least a tutorial of some sort so that you have a grasp of the basic concepts.

However, here is small introduction of Object-Oriented Programming (OOP)

to bring you at speed −

Overview of OOP Terminology

Class − A user-defined prototype for an object that defines a set of

attributes that characterize any object of the class. The attributes are

data members (class variables and instance variables) and methods,

accessed via dot notation.

Class variable − A variable that is shared by all instances of a class.

Class variables are defined within a class but outside any of the

class's methods. Class variables are not used as frequently as

instance variables are.

Data member − A class variable or instance variable that holds data

associated with a class and its objects.

Function overloading − The assignment of more than one behavior

to a particular function. The operation performed varies by the types

of objects or arguments involved.

Instance variable − A variable that is defined inside a method and

belongs only to the current instance of a class.

Inheritance − The transfer of the characteristics of a class to other

classes that are derived from it.

Instance − An individual object of a certain class. An object obj that

belongs to a class Circle, for example, is an instance of the class

Circle.

Instantiation − The creation of an instance of a class.

Method − A special kind of function that is defined in a class

definition.

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 1 of 13

Creating Classes

The class statement creates a new class definition. The name of the class

immediately follows the keyword class followed by a colon as follows −

class ClassName:

 'Optional class documentation string'

 class_suite

Example

Following is the example of a simple Python class −

class Employee:

'Common base class for all employees'

 empCount = 0

def __init__(self, name, salary):

self.name = name

self.salary = salary

Employee.empCount += 1

def displayCount(self):

print "Total Employee %d" % Employee.empCount

Object − A unique instance of a data structure that's defined by its

class. An object comprises both data members (class variables and

instance variables) and methods.

Operator overloading − The assignment of more than one function

to a particular operator.

The class has a documentation string, which can be accessed via

ClassName.__doc__.

The class_suite consists of all the component statements defining

class members, data attributes and functions.

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 2 of 13

def displayEmployee(self):

print "Name : ", self.name, ", Salary: ", self.salary

Creating Instance Objects

To create instances of a class, you call the class using class name and pass

in whatever arguments its __init__ method accepts.

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

Accessing Attributes

You access the object's attributes using the dot operator with object. Class

variable would be accessed using class name as follows −

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

Now, putting all the concepts together −

#!/usr/bin/python

The variable empCount is a class variable whose value is shared

among all instances of a this class. This can be accessed as

Employee.empCount from inside the class or outside the class.

The first method __init__() is a special method, which is called class

constructor or initialization method that Python calls when you create

a new instance of this class.

You declare other class methods like normal functions with the

exception that the first argument to each method is self. Python adds

the self argument to the list for you; you do not need to include it

when you call the methods.

 Live

Demo

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 3 of 13

http://tpcg.io/hbnZb4
http://tpcg.io/hbnZb4

class Employee:

'Common base class for all employees'

 empCount = 0

def __init__(self, name, salary):

self.name = name

self.salary = salary

Employee.empCount += 1

def displayCount(self):

print "Total Employee %d" % Employee.empCount

def displayEmployee(self):

print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

When the above code is executed, it produces the following result −

Name : Zara ,Salary: 2000

Name : Manni ,Salary: 5000

Total Employee 2

You can add, remove, or modify attributes of classes and objects at any time

−

emp1.age = 7 # Add an 'age' attribute.

emp1.age = 8 # Modify 'age' attribute.

del emp1.age # Delete 'age' attribute.

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 4 of 13

Instead of using the normal statements to access attributes, you can use the

following functions −

hasattr(emp1, 'age') # Returns true if 'age' attribute exists

getattr(emp1, 'age') # Returns value of 'age' attribute

setattr(emp1, 'age', 8) # Set attribute 'age' at 8

delattr(empl, 'age') # Delete attribute 'age'

Built-In Class Attributes

Every Python class keeps following built-in attributes and they can be

accessed using dot operator like any other attribute −

For the above class let us try to access all these attributes −

#!/usr/bin/python

class Employee:

'Common base class for all employees'

 empCount = 0

The getattr(obj, name[, default]) − to access the attribute of

object.

The hasattr(obj,name) − to check if an attribute exists or not.

The setattr(obj,name,value) − to set an attribute. If attribute does

not exist, then it would be created.

The delattr(obj, name) − to delete an attribute.

__dict__ − Dictionary containing the class's namespace.

__doc__ − Class documentation string or none, if undefined.

__name__ − Class name.

__module__ − Module name in which the class is defined. This

attribute is "__main__" in interactive mode.

__bases__ − A possibly empty tuple containing the base classes, in

the order of their occurrence in the base class list.

 Live

Demo

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 5 of 13

http://tpcg.io/CESJr8
http://tpcg.io/CESJr8

def __init__(self, name, salary):

self.name = name

self.salary = salary

Employee.empCount += 1

def displayCount(self):

print "Total Employee %d" % Employee.empCount

def displayEmployee(self):

print "Name : ", self.name, ", Salary: ", self.salary

print "Employee.__doc__:", Employee.__doc__

print "Employee.__name__:", Employee.__name__

print "Employee.__module__:", Employee.__module__

print "Employee.__bases__:", Employee.__bases__

print "Employee.__dict__:", Employee.__dict__

When the above code is executed, it produces the following result −

Employee.__doc__: Common base class for all employees

Employee.__name__: Employee

Employee.__module__: __main__

Employee.__bases__: ()

Employee.__dict__: {'__module__': '__main__', 'displayCount':

<function displayCount at 0xb7c84994>, 'empCount': 2,

'displayEmployee': <function displayEmployee at 0xb7c8441c>,

'__doc__': 'Common base class for all employees',

'__init__': <function __init__ at 0xb7c846bc>}

Destroying Objects (Garbage Collection)

Python deletes unneeded objects (built-in types or class instances)

automatically to free the memory space. The process by which Python

periodically reclaims blocks of memory that no longer are in use is termed

Garbage Collection.

Python's garbage collector runs during program execution and is triggered

when an object's reference count reaches zero. An object's reference count

changes as the number of aliases that point to it changes.

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 6 of 13

An object's reference count increases when it is assigned a new name or

placed in a container (list, tuple, or dictionary). The object's reference count

decreases when it's deleted with del, its reference is reassigned, or its

reference goes out of scope. When an object's reference count reaches zero,

Python collects it automatically.

a = 40 # Create object <40>

b = a # Increase ref. count of <40>

c = [b] # Increase ref. count of <40>

del a # Decrease ref. count of <40>

b = 100 # Decrease ref. count of <40>

c[0] = -1 # Decrease ref. count of <40>

You normally will not notice when the garbage collector destroys an

orphaned instance and reclaims its space. But a class can implement the

special method __del__(), called a destructor, that is invoked when the

instance is about to be destroyed. This method might be used to clean up

any non memory resources used by an instance.

Example

This __del__() destructor prints the class name of an instance that is about to

be destroyed −

#!/usr/bin/python

class Point:

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def __del__(self):

 class_name = self.__class__.__name__

print class_name, "destroyed"

pt1 = Point()

pt2 = pt1

 Live

Demo

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 7 of 13

http://tpcg.io/x2iiCA
http://tpcg.io/x2iiCA

pt3 = pt1

print id(pt1), id(pt2), id(pt3) # prints the ids of the obejcts

del pt1

del pt2

del pt3

When the above code is executed, it produces following result −

3083401324 3083401324 3083401324

Point destroyed

Note − Ideally, you should define your classes in separate file, then you

should import them in your main program file using import statement.

Class Inheritance

Instead of starting from scratch, you can create a class by deriving it from a

preexisting class by listing the parent class in parentheses after the new

class name.

The child class inherits the attributes of its parent class, and you can use

those attributes as if they were defined in the child class. A child class can

also override data members and methods from the parent.

Syntax

Derived classes are declared much like their parent class; however, a list of

base classes to inherit from is given after the class name −

class SubClassName (ParentClass1[, ParentClass2, ...]):

'Optional class documentation string'

 class_suite

Example

#!/usr/bin/python

 Live

Demo

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 8 of 13

http://tpcg.io/6qlvTh
http://tpcg.io/6qlvTh

class Parent: # define parent class

 parentAttr = 100

def __init__(self):

print "Calling parent constructor"

def parentMethod(self):

print 'Calling parent method'

def setAttr(self, attr):

Parent.parentAttr = attr

def getAttr(self):

print "Parent attribute :", Parent.parentAttr

class Child(Parent): # define child class

def __init__(self):

print "Calling child constructor"

def childMethod(self):

print 'Calling child method'

c = Child() # instance of child

c.childMethod() # child calls its method

c.parentMethod() # calls parent's method

c.setAttr(200) # again call parent's method

c.getAttr() # again call parent's method

When the above code is executed, it produces the following result −

Calling child constructor

Calling child method

Calling parent method

Parent attribute : 200

Similar way, you can drive a class from multiple parent classes as follows −

class A: # define your class A

.....

class B: # define your class B

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 9 of 13

.....

class C(A, B): # subclass of A and B

.....

You can use issubclass() or isinstance() functions to check a relationships of

two classes and instances.

Overriding Methods

You can always override your parent class methods. One reason for

overriding parent's methods is because you may want special or different

functionality in your subclass.

Example

#!/usr/bin/python

class Parent: # define parent class

def myMethod(self):

print 'Calling parent method'

class Child(Parent): # define child class

def myMethod(self):

print 'Calling child method'

c = Child() # instance of child

c.myMethod() # child calls overridden method

When the above code is executed, it produces the following result −

The issubclass(sub, sup) boolean function returns true if the given

subclass sub is indeed a subclass of the superclass sup.

The isinstance(obj, Class) boolean function returns true if obj is an

instance of class Class or is an instance of a subclass of Class

 Live

Demo

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 10 of 13

http://tpcg.io/94KY94
http://tpcg.io/94KY94

Calling child method

Base Overloading Methods

Following table lists some generic functionality that you can override in your

own classes −

Overloading Operators

Suppose you have created a Vector class to represent two-dimensional

vectors, what happens when you use the plus operator to add them? Most

likely Python will yell at you.

You could, however, define the __add__ method in your class to perform

vector addition and then the plus operator would behave as per expectation

−

Example

Sr.No. Method, Description & Sample Call

1

__init__ (self [,args...])

Constructor (with any optional arguments)

Sample Call : obj = className(args)

2

__del__(self)

Destructor, deletes an object

Sample Call : del obj

3

__repr__(self)

Evaluable string representation

Sample Call : repr(obj)

4

__str__(self)

Printable string representation

Sample Call : str(obj)

5

__cmp__ (self, x)

Object comparison

Sample Call : cmp(obj, x)

 Live
https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 11 of 13

http://tpcg.io/HNbb5f
http://tpcg.io/HNbb5f

Demo

#!/usr/bin/python

class Vector:

def __init__(self, a, b):

self.a = a

self.b = b

def __str__(self):

return 'Vector (%d, %d)' % (self.a, self.b)

def __add__(self,other):

return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)

v2 = Vector(5,-2)

print v1 + v2

When the above code is executed, it produces the following result −

Vector(7,8)

Data Hiding

An object's attributes may or may not be visible outside the class definition.

You need to name attributes with a double underscore prefix, and those

attributes then are not be directly visible to outsiders.

Example

#!/usr/bin/python

class JustCounter:

 __secretCount = 0

def count(self):

self.__secretCount += 1

 Live

Demo

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 12 of 13

http://tpcg.io/HNbb5f
http://tpcg.io/T0JYMC
http://tpcg.io/T0JYMC

print self.__secretCount

counter = JustCounter()

counter.count()

counter.count()

print counter.__secretCount

When the above code is executed, it produces the following result −

1

2

Traceback (most recent call last):

 File "test.py", line 12, in <module>

 print counter.__secretCount

AttributeError: JustCounter instance has no attribute '__secretCount'

Python protects those members by internally changing the name to include

the class name. You can access such attributes as

object._className__attrName. If you would replace your last line as

following, then it works for you −

.........................

print counter._JustCounter__secretCount

When the above code is executed, it produces the following result −

1

2

2

https://www.tutorialspoint.com/python/python_classes_objects.htm

Page 13 of 13

	Python - Object Oriented
	Overview of OOP Terminology
	Creating Classes
	Example

	Creating Instance Objects
	Accessing Attributes
	Built-In Class Attributes
	Destroying Objects (Garbage Collection)
	Example

	Class Inheritance
	Syntax
	Example

	Overriding Methods
	Example

	Base Overloading Methods
	Overloading Operators
	Example

	Data Hiding
	Example

