0 tutoriﬂspoint Page 1 of 13

Python - Object Oriented

Python has been an object-oriented language since it existed. Because of
this, creating and using classes and objects are downright easy. This chapter
helps you become an expert in using Python's object-oriented programming
support.

If you do not have any previous experience with object-oriented (OO)
programming, you may want to consult an introductory course on it or at
least a tutorial of some sort so that you have a grasp of the basic concepts.

However, here is small introduction of Object-Oriented Programming (OOP)
to bring you at speed —

Overview of OOP Terminology

m Class — A user-defined prototype for an object that defines a set of
attributes that characterize any object of the class. The attributes are
data members (class variables and instance variables) and methods,
accessed via dot notation.

m Class variable — A variable that is shared by all instances of a class.
Class variables are defined within a class but outside any of the
class's methods. Class variables are not used as frequently as
instance variables are.

m Data member — A class variable or instance variable that holds data
associated with a class and its objects.

B Function overloading — The assignment of more than one behavior
to a particular function. The operation performed varies by the types
of objects or arguments involved.

m Instance variable — A variable that is defined inside a method and
belongs only to the current instance of a class.

B Inheritance — The transfer of the characteristics of a class to other
classes that are derived from it.

m Instance — An individual object of a certain class. An object obj that
belongs to a class Circle, for example, is an instance of the class
Circle.

B Instantiation — The creation of an instance of a class.

B Method — A special kind of function that is defined in a class
definition.

https://www.tutorialspoint.com/python/python_classes_objects.htm

0 tutorﬁaﬂspoint Page 2 of 13

B Object — A unique instance of a data structure that's defined by its
class. An object comprises both data members (class variables and
instance variables) and methods.

B Operator overloading — The assignment of more than one function
to a particular operator.

Creating Classes

The class statement creates a new class definition. The name of the class
immediately follows the keyword class followed by a colon as follows —

class ClassName:
'‘Optional class documentation string'
class_suite

B The class has a documentation string, which can be accessed via
ClassName.__doc__.

B The class suite consists of all the component statements defining
class members, data attributes and functions.

Example

Following is the example of a simple Python class —

class Employee:
'Common base class for all employees'

empCount = 0

def _ init__ (self, name, salary):
self.name = name
self.salary = salary

Employee.empCount += 1

def displayCount (self) :
print "Total Employee $d" $ Employee.empCount

https://www.tutorialspoint.com/python/python_classes_objects.htm

0 tutorialspoint Page 3 of 13

def displayEmployee (self) :

print "Name : ", self.name, ", Salary: ", self.salary

B The variable empCount is a class variable whose value is shared
among all instances of a this class. This can be accessed as
Employee.empCount from inside the class or outside the class.

B The first method __init_ () is a special method, which is called class
constructor or initialization method that Python calls when you create
a new instance of this class.

B You declare other class methods like normal functions with the
exception that the first argument to each method is self. Python adds
the self argument to the list for you; you do not need to include it
when you call the methods.

Creating Instance Objects

To create instances of a class, you call the class using class name and pass
in whatever arguments its __init_ method accepts.

"This would create first object of Employee class"
empl = Employee("Zara", 2000)

"This would create second object of Employee class"
emp2 = Employee("Manni", 5000)

Accessing Attributes

You access the object's attributes using the dot operator with object. Class
variable would be accessed using class name as follows —

empl.displayEmployee()
emp?2.displayEmployee()
print "Total Employee %d" % Employee.empCount

Now, putting all the concepts together —

#!/usr/bin/python

https://www.tutorialspoint.com/python/python_classes_objects.htm

http://tpcg.io/hbnZb4
http://tpcg.io/hbnZb4

0 tutorialspoint Page 4 of 13

class Employee:
'Common base class for all employees'

empCount = 0

def _ init_ (self, name, salary):
self . .name = name
self.salary = salary

Employee.empCount += 1

def displayCount (self) :
print "Total Employee 5d" % Employee.empCount

def displayEmployee (self) :
print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"
empl = Employee ("Zara", 2000)

"This would create second object of Employee class"
emp2 = Employee ("Manni", 5000)
empl.displayEmployee ()

emp2.displayEmployee ()

print "Total Employee 5d" % Employee.empCount

When the above code is executed, it produces the following result —

Name : Zara ,Salary: 2000
Name : Manni ,Salary: 5000
Total Employee 2

You can add, remove, or modify attributes of classes and objects at any time

empl.age = 7 # Add an 'age' attribute.
empl.age = 8 # Modify 'age' attribute.
del empl.age # Delete 'age' attribute.

https://www.tutorialspoint.com/python/python_classes_objects.htm

0 tutorialspoint Page 5 of 13

Instead of using the normal statements to access attributes, you can use the
following functions —

B The getattr(obj, name[, default]) — to access the attribute of
object.

B The hasattr(obj,name) — to check if an attribute exists or not.

B The setattr(obj,name,value) — to set an attribute. If attribute does
not exist, then it would be created.

B The delattr(obj, name) — to delete an attribute.

hasattr(empl, 'age') # Returns true if 'age' attribute exists
getattr(empl, 'age') # Returns value of 'age' attribute
setattr(empl, 'age’, 8) # Set attribute 'age’ at 8
delattr(empl, '‘age') # Delete attribute 'age’

Built-In Class Attributes

Every Python class keeps following built-in attributes and they can be
accessed using dot operator like any other attribute —

m _ dict__ — Dictionary containing the class's namespace.

m _doc__ — Class documentation string or none, if undefined.

® _name__ — Class name.

B __module__ — Module name in which the class is defined. This
attribute is "__main__" in interactive mode.

m _bases__ — A possibly empty tuple containing the base classes, in

the order of their occurrence in the base class list.

For the above class let us try to access all these attributes —

#!/usr/bin/python
class Employee:

'Common base class for all employees'

empCount = 0

https://www.tutorialspoint.com/python/python_classes_objects.htm

http://tpcg.io/CESJr8
http://tpcg.io/CESJr8

0 tutorﬁaﬂspoint Page 6 of 13

def _ init__ (self, name, salary):
self . .name = name
self.salary = salary

Employee.empCount += 1

def displayCount (self) :
print "Total Employee 5d" % Employee.empCount

def displayEmployee (self) :

print "Name : ", self.name, ", Salary: ", self.salary
print "Employee._doc_ :", Employee._ _doc_
print "Employee._name_ :", Employee._name_
print "Employee._ module_ :", Employee._ module_
print "Employee._ bases_ :", Employee._ bases_
print "Employee._ dict_ :", Employee._ dict_

When the above code is executed, it produces the following result —

Employee. doc_ : Common base class for all employees
Employee. name_ : Employee

Employee.__module_: main__
Employee. bases : ()
Employee. dict_: {'_ _module_ "' main_", 'displayCount"

<function displayCount at 0xb7¢c84994>, 'empCount': 2,
‘displayEmployee': <function displayEmployee at Oxb7c8441c>,
' doc__'": 'Common base class for all employees',

' _init_": <function __init__ at Oxb7c846bc>}

Destroying Objects (Garbage Collection)

Python deletes unneeded objects (built-in types or class instances)
automatically to free the memory space. The process by which Python
periodically reclaims blocks of memory that no longer are in use is termed
Garbage Collection.

Python's garbage collector runs during program execution and is triggered
when an object's reference count reaches zero. An object's reference count
changes as the number of aliases that point to it changes.

https://www.tutorialspoint.com/python/python_classes_objects.htm

0 tutorialspoint Page 7 of 13

An object's reference count increases when it is assigned a new name or
placed in a container (list, tuple, or dictionary). The object's reference count
decreases when it's deleted with del, its reference is reassigned, or its

reference goes out of scope. When an object's reference count reaches zero,
Python collects it automatically.

a =140 # Create object <40>
b=a # Increase ref. count of <40>
c =[b] # Increase ref. count of <40>

del a # Decrease ref. count of <40>
b =100 # Decrease ref. count of <40>
c[0] = -1 # Decrease ref. count of <40>

You normally will not notice when the garbage collector destroys an
orphaned instance and reclaims its space. But a class can implement the
special method _del (), called a destructor, that is invoked when the
instance is about to be destroyed. This method might be used to clean up
any non memory resources used by an instance.

Example

This __del () destructor prints the class name of an instance that is about to
be destroyed —

#!/usr/bin/python

class Point:

def _ init__ (self, x=0, y=0):
self.x = x
self.y =y

def del (self):

class_name = self. class . name

print class_name, "destroyed"

ptl
pt2

Point ()
ptl

https://www.tutorialspoint.com/python/python_classes_objects.htm

http://tpcg.io/x2iiCA
http://tpcg.io/x2iiCA

0 tutoriolspoint Page 8 of 13

pt3 = ptl

print id(ptl), id(pt2), id(pt3) # prints the ids of the obejcts
del ptl

del pt2

del pt3

When the above code is executed, it produces following result —

3083401324 3083401324 3083401324
Point destroyed

Note — Ideally, you should define your classes in separate file, then you
should import them in your main program file using import statement.

Class Inheritance

Instead of starting from scratch, you can create a class by deriving it from a
preexisting class by listing the parent class in parentheses after the new
class name.

The child class inherits the attributes of its parent class, and you can use
those attributes as if they were defined in the child class. A child class can
also override data members and methods from the parent.

Syntax

Derived classes are declared much like their parent class; however, a list of
base classes to inherit from is given after the class name —

class SubClassName (ParentClassl|[, ParentClass2, ...]):
'Optional class documentation string'

class_suite

Example

#!/usr/bin/python

https://www.tutorialspoint.com/python/python_classes_objects.htm

http://tpcg.io/6qlvTh
http://tpcg.io/6qlvTh

0 tutorialspoint Page 9 of 13

class Parent: # define parent class
parentAttr = 100
def _ init__ (self):

print "Calling parent constructor"

def parentMethod (self) :
print 'Calling parent method’

def setAttr (self, attr):
Parent .parentAttr = attr

def getAttr (self) :

print "Parent attribute :", Parent.parentAttr

class Child (Parent): # define child class
def _ init__ (self) :

print "Calling child constructor"

def childMethod (self) :
print 'Calling child method'

instance of child
child calls its method

c = Child()
c.childMethod ()
c.parentMethod () calls parent's method
c.setAttr (200)
c

.getAttr ()

again call parent's method

HH FH FH K H

again call parent's method

When the above code is executed, it produces the following result —

Calling child constructor
Calling child method
Calling parent method
Parent attribute : 200

Similar way, you can drive a class from multiple parent classes as follows —

class A: # define your class A

class B: # define your class B

https://www.tutorialspoint.com/python/python_classes_objects.htm

0 tutorialspoint Page 10 of 13

class C(A, B): # subclass of A and B

You can use issubclass() or isinstance() functions to check a relationships of
two classes and instances.

m The issubclass(sub, sup) boolean function returns true if the given
subclass sub is indeed a subclass of the superclass sup.

m The isinstance(obj, Class) boolean function returns true if obj is an
instance of class Class or is an instance of a subclass of Class

Overriding Methods

You can always override your parent class methods. One reason for
overriding parent's methods is because you may want special or different
functionality in your subclass.

Example

Live
, Demo
#!/usr/bin/python
class Parent: # define parent class
def myMethod (self) :
print 'Calling parent method’
class Child (Parent) : # define child class
def myMethod (self) :
print 'Calling child method'
c = Child() # instance of child
c.myMethod () # child calls overridden method

When the above code is executed, it produces the following result —

https://www.tutorialspoint.com/python/python_classes_objects.htm

http://tpcg.io/94KY94
http://tpcg.io/94KY94

0 tutorialspoint Page 11 of 13

Calling child method

Base Overloading Methods

Following table lists some generic functionality that you can override in your
own classes —

Sr.No. Method, Description & Sample Call

__init_ (self [,args...])
1 Constructor (with any optional arguments)
Sample Call : obj = className(args)

__del_(self)
2 Destructor, deletes an object
Sample Call : del obj

__repr__(self)
3 Evaluable string representation
Sample Call : repr(obj)

_str__(self)
4 Printable string representation
Sample Call : str(obj)

_cmp__ (self, x)
5 Object comparison
Sample Call : cmp(obj, x)

Overloading Operators

Suppose you have created a Vector class to represent two-dimensional
vectors, what happens when you use the plus operator to add them? Most
likely Python will yell at you.

You could, however, define the _add__ method in your class to perform
vector addition and then the plus operator would behave as per expectation

Example

Live
https://www.tutorialspoint.com/python/python_classes_objects.htm

http://tpcg.io/HNbb5f
http://tpcg.io/HNbb5f

0 tutorialspoint

#!/usr/bin/python

class Vector:
def _ init_ (self, a, Db):
self.a = a
self.b = b

def _ str (self):

return 'Vector (%d, %d)' % (self.a, self.b)

def _ add__ (self, other):

return Vector (self.a + other.a, self.b + other.b)

vl
v2

Vector (2,10)
Vector (5, -2)

print vl + v2

When the above code is executed, it produces the following result —

Vector(7,8)

Data Hiding

Page 12 of 13

An object's attributes may or may not be visible outside the class definition.
You need to name attributes with a double underscore prefix, and those

attributes then are not be directly visible to outsiders.

Example

#!/usr/bin/python

class JustCounter:

__secretCount = 0

def count (self) :

self. secretCount += 1

https://www.tutorialspoint.com/python/python_classes_objects.htm

http://tpcg.io/HNbb5f
http://tpcg.io/T0JYMC
http://tpcg.io/T0JYMC

0 tutorialspoint Page 13 of 13
print self.__secretCount

counter = JustCounter ()
counter.count ()
counter.count ()

print counter.__secretCount

When the above code is executed, it produces the following result —

1
2
Traceback (most recent call last):
File "test.py", line 12, in <module>
print counter._ secretCount
AttributeError: JustCounter instance has no attribute ' secretCount'

Python protects those members by internally changing the name to include
the class name. You can access such attributes as

object. className__attrName. If you would replace your last line as
following, then it works for you —

print counter._JustCounter__secretCount

When the above code is executed, it produces the following result —

https://www.tutorialspoint.com/python/python_classes_objects.htm

	Python - Object Oriented
	Overview of OOP Terminology
	Creating Classes
	Example

	Creating Instance Objects
	Accessing Attributes
	Built-In Class Attributes
	Destroying Objects (Garbage Collection)
	Example

	Class Inheritance
	Syntax
	Example

	Overriding Methods
	Example

	Base Overloading Methods
	Overloading Operators
	Example

	Data Hiding
	Example

