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About the Tutorial 

Apache Spark is written in Scala programming language. To support Python with Spark, 

Apache Spark community released a tool, PySpark. Using PySpark, you can work with 

RDDs in Python programming language also. It is because of a library called Py4j that they 

are able to achieve this. 

This is an introductory tutorial, which covers the basics of Data-Driven Documents and 

explains how to deal with its various components and sub-components. 

Audience 

This tutorial is prepared for those professionals who are aspiring to make a career in 

programming language and real-time processing framework. This tutorial is intended to 

make the readers comfortable in getting started with PySpark along with its various 

modules and submodules. 

Prerequisites 

Before proceeding with the various concepts given in this tutorial, it is being assumed that 

the readers are already aware about what a programming language and a framework is. 

In addition to this, it will be very helpful, if the readers have a sound knowledge of Apache 

Spark, Apache Hadoop, Scala Programming Language, Hadoop Distributed File System 

(HDFS) and Python. 

Copyright and Disclaimer 

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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In this chapter, we will get ourselves acquainted with what Apache Spark is and how was 

PySpark developed. 

Spark – Overview  

Apache Spark is a lightning fast real-time processing framework. It does in-memory 

computations to analyze data in real-time. It came into picture as Apache Hadoop 

MapReduce was performing batch processing only and lacked a real-time processing 

feature. Hence, Apache Spark was introduced as it can perform stream processing in real-

time and can also take care of batch processing.   

Apart from real-time and batch processing, Apache Spark supports interactive queries and 

iterative algorithms also. Apache Spark has its own cluster manager, where it can host its 

application. It leverages Apache Hadoop for both storage and processing. It uses HDFS 

(Hadoop Distributed File system) for storage and it can run Spark applications on YARN 

as well. 

PySpark – Overview  

Apache Spark is written in Scala programming language. To support Python with Spark, 

Apache Spark Community released a tool, PySpark. Using PySpark, you can work with 

RDDs in Python programming language also. It is because of a library called Py4j that 

they are able to achieve this.  

PySpark offers PySpark Shell which links the Python API to the spark core and initializes 

the Spark context. Majority of data scientists and analytics experts today use Python 

because of its rich library set. Integrating Python with Spark is a boon to them. 

  

1.PySpark – Introduction 
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In this chapter, we will understand the environment setup of PySpark. 

Note: This is considering that you have Java and Scala installed on your computer. 

Let us now download and set up PySpark with the following steps. 

Step 1: Go to the official Apache Spark download page and download the latest version 

of Apache Spark available there. In this tutorial, we are using spark-2.1.0-bin-

hadoop2.7. 

Step 2: Now, extract the downloaded Spark tar file. By default, it will get downloaded in 

Downloads directory. 

# tar -xvf Downloads/spark-2.1.0-bin-hadoop2.7.tgz 

It will create a directory spark-2.1.0-bin-hadoop2.7. Before starting PySpark, you need 

to set the following environments to set the Spark path and the Py4j path. 

export SPARK_HOME=/home/hadoop/spark-2.1.0-bin-hadoop2.7 

export PATH=$PATH:/home/hadoop/spark-2.1.0-bin-hadoop2.7/bin 

 

 

export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.4-
src.zip:$PYTHONPATH 

export PATH=$SPARK_HOME/python:$PATH 

Or, to set the above environments globally, put them in the .bashrc file. Then run the 

following command for the environments to work. 

# source .bashrc 

Now that we have all the environments set, let us go to Spark directory and invoke PySpark 

shell by running the following command: 

# ./bin/pyspark 

This will start your PySpark shell. 

Python 2.7.12 (default, Nov 19 2016, 06:48:10)  

[GCC 5.4.0 20160609] on linux2 

Type "help", "copyright", "credits" or "license" for more information.  

Welcome to 

      ____              __ 

     / __/__  ___ _____/ /__ 

2.PySpark – Environment Setup  

http://spark.apache.org/downloads.html
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    _\ \/ _ \/ _ `/ __/  '_/ 

   /__ / .__/\_,_/_/ /_/\_\   version 2.1.0 

      /_/ 

 

Using Python version 2.7.12 (default, Nov 19 2016 06:48:10) 

SparkSession available as 'spark'. 

>>>  
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SparkContext is the entry point to any spark functionality. When we run any Spark 

application, a driver program starts, which has the main function and your SparkContext  

gets initiated here. The driver program then runs the operations inside the executors on 

worker nodes.  

SparkContext uses Py4J to launch a JVM and creates a JavaSparkContext. By default, 

PySpark has SparkContext available as ‘sc’, so creating a new SparkContext won't work. 

 

 

 

 

3.PySpark – SparkContext  
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The following code block has the details of a PySpark class and the parameters, which a 

SparkContext can take. 

class pyspark.SparkContext(master=None, appName=None, sparkHome=None, 
pyFiles=None, environment=None, batchSize=0, serializer=PickleSerializer(), 
conf=None, gateway=None, jsc=None, profiler_cls=<class 
'pyspark.profiler.BasicProfiler'>) 

Parameters 

Following are the parameters of a SparkContext. 

 Master – It is the URL of the cluster it connects to. 

 

 appName – Name of your job. 

 

 sparkHome – Spark installation directory. 

 

 pyFiles – The .zip or .py files to send to the cluster and add to the PYTHONPATH.  

 

 Environment – Worker nodes environment variables. 

 

 batchSize – The number of Python objects represented as a single Java object. 

Set 1 to disable batching, 0 to automatically choose the batch size based on object 

sizes, or -1 to use an unlimited batch size. 

 
 Serializer – RDD serializer. 

 

 Conf – An object of L{SparkConf} to set all the Spark properties. 

 

 Gateway – Use an existing gateway and JVM, otherwise initializing a new JVM. 

 

 JSC – The JavaSparkContext instance. 

 

 profiler_cls – A class of custom Profiler used to do profiling (the default is – 

pyspark.profiler.BasicProfiler). 

Among the above parameters, master and appname are mostly used. The first two lines 

of any PySpark program looks as shown below: 

from pyspark import SparkContext 

sc = SparkContext("local", "First App") 

SparkContext Example – PySpark Shell 

Now that you know enough about SparkContext, let us run a simple example on PySpark 

shell. In this example, we will be counting the number of lines with character 'a' or 'b' in 

the README.md file. So, let us say if there are 5 lines in a file and 3 lines have the 

character 'a', then the output will be  Line with a: 3. Same will be done for character 

‘b’. 
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Note: We are not creating any SparkContext object in the following example because by 

default, Spark automatically creates the SparkContext object named sc, when PySpark 

shell starts. In case you try to create another SparkContext  object, you will get the 

following error – "ValueError: Cannot run multiple SparkContexts at once".  

 

 

>>> logFile = "file:///home/hadoop/spark-2.1.0-bin-hadoop2.7/README.md" 

>>> logData = sc.textFile(logFile).cache() 

>>> numAs = logData.filter(lambda s: 'a' in s).count() 

>>> numBs = logData.filter(lambda s: 'b' in s).count() 

>>> print "Lines with a: %i, lines with b: %i" % (numAs, numBs) 

Lines with a: 62, lines with b: 30 

SparkContext Example - Python Program 

Let us run the same example using a Python program. Create a Python file called 

firstapp.py and enter the following code in that file. 

-----------------------------------------------firstapp.py--------------------
-------------------- 

from pyspark import SparkContext 

logFile = "file:///home/hadoop/spark-2.1.0-bin-hadoop2.7/README.md"   

sc = SparkContext("local", "first app") 

logData = sc.textFile(logFile).cache() 

numAs = logData.filter(lambda s: 'a' in s).count() 

numBs = logData.filter(lambda s: 'b' in s).count() 

print "Lines with a: %i, lines with b: %i" % (numAs, numBs) 

-----------------------------------------------firstapp.py--------------------
-------------------- 
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Then we will execute the following command in the terminal to run this Python file. We 

will get the same output as above. 

$SPARK_HOME/bin/spark-submit firstapp.py 

Output: Lines with a: 62, lines with b: 30 
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Now that we have installed and configured PySpark on our system, we can program in 

Python on Apache Spark. However before doing so, let us understand a fundamental 

concept in Spark - RDD.   

RDD stands for Resilient Distributed Dataset, these are the elements that run and 

operate on multiple nodes to do parallel processing on a cluster. RDDs are immutable 

elements, which means once you create an RDD you cannot change it. RDDs are fault 

tolerant as well, hence in case of any failure, they recover automatically. You can apply 

multiple operations on these RDDs to achieve a certain task.  

To apply operations on these RDD's, there are two ways:  

 Transformation and  

 Action 

Let us understand these two ways in detail. 

Transformation: These are the operations, which are applied on a RDD to create a new 

RDD. Filter, groupBy and map are the examples of transformations. 

Action: These are the operations that are applied on RDD, which instructs Spark to 

perform computation and send the result back to the driver. 

To apply any operation in PySpark, we need to create a PySpark RDD first.  The following 

code block has the detail of a PySpark RDD Class: 

class pyspark.RDD(jrdd, ctx, 
jrdd_deserializer=AutoBatchedSerializer(PickleSerializer())) 

Let us see how to run a few basic operations using PySpark. The following code in a Python 

file creates RDD words, which stores a set of words mentioned. 

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs 
hadoop", "pyspark","pyspark and spark"]) 

We will now run a few operations on words. 

count() 

Number of elements in the RDD is returned. 

-----------------------------------------------count.py-----------------------
--------------------- 

from pyspark import SparkContext 

sc = SparkContext("local", "count app") 

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs 
hadoop", "pyspark","pyspark and spark"]) 

counts = words.count() 

4.PySpark – RDD 



PySpark 

9 

 

print "Number of elements in RDD -> %i" % (counts) 

-----------------------------------------------count.py-----------------------
--------------------- 

Command: The command for count() is – 

$SPARK_HOME/bin/spark-submit count.py 

Output: The output for the above command is – 

Number of elements in RDD -> 8 

collect() 

All the elements in the RDD are returned. 

-----------------------------------------------collect.py---------------------
----------------------- 

from pyspark import SparkContext 

sc = SparkContext("local", "Collect app") 

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs 
hadoop", "pyspark","pyspark and spark"]) 

coll = words.collect() 

print "Elements in RDD -> %s" % (coll) 

-----------------------------------------------collect.py---------------------
----------------------- 

Command: The command for collect() is – 

$SPARK_HOME/bin/spark-submit collect.py 

Output: The output for the above command is – 

Elements in RDD -> ['scala', 'java', 'hadoop', 'spark', 'akka', 'spark vs 
hadoop', 'pyspark', 'pyspark and spark'] 

foreach(f) 

Returns only those elements which meet the condition of the function inside foreach. In 

the following example, we call a print function in foreach, which prints all the elements in 

the RDD. 

-----------------------------------------------foreach.py---------------------
----------------------- 

from pyspark import SparkContext 

sc = SparkContext("local", "ForEach app") 

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs 
hadoop", "pyspark","pyspark and spark"]) 
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def f(x): print(x) 

fore = words.foreach(f)  

-----------------------------------------------foreach.py---------------------
----------------------- 

Command: The command for foreach(f) is – 

$SPARK_HOME/bin/spark-submit foreach.py 

Output: The output for the above command is – 

scala 

java 

hadoop 

spark 

akka 

spark vs hadoop 

pyspark 

pyspark and spark 

filter(f) 

A new RDD is returned containing the elements, which satisfies the function inside the 

filter. In the following example, we filter out the strings containing ''spark". 

-----------------------------------------------filter.py----------------------
---------------------- 

from pyspark import SparkContext 

sc = SparkContext("local", "Filter app") 

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs 
hadoop", "pyspark","pyspark and spark"]) 

words_filter = words.filter(lambda x: 'spark' in x) 

filtered = words_filter.collect() 

print "Fitered RDD -> %s" % (filtered) 

-----------------------------------------------filter.py----------------------
----------------------- 

Command: The command for filter(f) is – 

$SPARK_HOME/bin/spark-submit filter.py 

Output: The output for the above command is – 

Fitered RDD -> ['spark', 'spark vs hadoop', 'pyspark', 'pyspark and spark'] 
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map(f, preservesPartitioning=False) 

A new RDD is returned by applying a function to each element in the RDD. In the following 

example, we form a key value pair and map every string with a value of 1. 

-----------------------------------------------map.py-------------------------
------------------- 

from pyspark import SparkContext 

sc = SparkContext("local", "Map app") 

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs 
hadoop", "pyspark","pyspark and spark"]) 

words_map = words.map(lambda x: (x, 1)) 

mapping = words_map.collect() 

print "Key value pair -> %s" % (mapping) 

-----------------------------------------------map.py-------------------------
------------------- 

Command: The command for map(f, preservesPartitioning=False) is – 

$SPARK_HOME/bin/spark-submit map.py 

Output: The output of the above command is – 

Key value pair -> [('scala', 1), ('java', 1), ('hadoop', 1), ('spark', 1), 
('akka', 1), ('spark vs hadoop', 1), ('pyspark', 1), ('pyspark and spark', 1)] 

reduce(f) 

After performing the specified commutative and associative binary operation, the element  

in the RDD is returned. In the following example, we are importing add package from the 

operator and applying it on ‘num’ to carry out a simple addition operation. 

-----------------------------------------------reduce.py----------------------
---------------------- 

from pyspark import SparkContext 

from operator import add 

sc = SparkContext("local", "Reduce app") 

nums = sc.parallelize([1, 2, 3, 4, 5]) 

adding = nums.reduce(add) 

print "Adding all the elements -> %i" % (adding) 

-----------------------------------------------reduce.py----------------------
---------------------- 

Command: The command for reduce(f) is – 

$SPARK_HOME/bin/spark-submit reduce.py 
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Output: The output of the above command is – 

Adding all the elements -> 15 

join(other, numPartitions=None) 

It returns RDD with a pair of elements with the matching keys and all the values for that 

particular key. In the following example, there are two pair of elements in two different  

RDDs. After joining these two RDDs, we get an RDD with elements having matching keys 

and their values. 

-----------------------------------------------join.py------------------------
-------------------- 

from pyspark import SparkContext 

sc = SparkContext("local", "Join app") 

x = sc.parallelize([("spark", 1), ("hadoop", 4)]) 

y = sc.parallelize([("spark", 2), ("hadoop", 5)]) 

joined = x.join(y) 

final = joined.collect() 

print "Join RDD -> %s" % (final) 

-----------------------------------------------join.py------------------------
-------------------- 

Command: The command for join(other, numPartitions=None) is – 

$SPARK_HOME/bin/spark-submit join.py 

Output: The output for the above command is – 

Join RDD -> [('spark', (1, 2)), ('hadoop', (4, 5))] 

cache() 

Persist this RDD with the default storage level (MEMORY_ONLY). You can also check if the 

RDD is cached or not. 

-----------------------------------------------cache.py-----------------------
--------------------- 

from pyspark import SparkContext 
 

sc = SparkContext("local", "Cache app") 
 

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs 
hadoop", "pyspark","pyspark and spark"]) 
 

words.cache() 
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caching = words.persist().is_cached 
 

print "Words got chached -> %s" % (caching) 

-----------------------------------------------cache.py-----------------------
--------------------- 

Command: The command for cache() is – 

$SPARK_HOME/bin/spark-submit cache.py 

Output: The output for the above program is – 

Words got cached -> True 

These were some of the most important operations that are done on PySpark RDD. 
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For parallel processing, Apache Spark uses shared variables. A copy of shared variable 

goes on each node of the cluster when the driver sends a task to the executor on the 

cluster, so that it can be used for performing tasks.  

There are two types of shared variables supported by Apache Spark –  

 Broadcast 

 Accumulator 

Let us understand them in detail. 

Broadcast 

Broadcast variables are used to save the copy of data across all nodes. This variable is 

cached on all the machines and not sent on machines with tasks. The following code block 

has the details of a Broadcast class for PySpark. 

class pyspark.Broadcast(sc=None, value=None, pickle_registry=None, path=None)  

The following example shows how to use a Broadcast variable. A Broadcast variable has 

an attribute called value, which stores the data and is used to return a broadcasted value. 

-----------------------------------------------broadcast.py-------------------
------------------------- 

from pyspark import SparkContext 
 

sc = SparkContext("local", "Broadcast app") 
 

words_new = sc.broadcast(["scala", "java", "hadoop", "spark", "akka"])  
 

data = words_new.value 
 

print "Stored data -> %s" % (data) 
 

elem = words_new.value[2] 
 

print "Printing a particular element in RDD -> %s" % (elem) 

-----------------------------------------------broadcast.py-------------------
------------------------- 

Command: The command for a broadcast variable is as follows: 

$SPARK_HOME/bin/spark-submit broadcast.py 

 

5.PySpark – Broadcast & Accumulator 
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Output: The output for the following command is given below. 

Stored data -> ['scala', 'java', 'hadoop', 'spark', 'akka'] 

Printing a particular element in RDD -> hadoop 

Accumulator 

Accumulator variables are used for aggregating the information through associative and 

commutative operations. For example, you can use an accumulator for a sum operation 

or counters (in MapReduce). The following code block has the details of an Accumulator 

class for PySpark. 

class pyspark.Accumulator(aid, value, accum_param) 

The following example shows how to use an Accumulator variable. An Accumulator variable 

has an attribute called value that is similar to what a broadcast variable has. It stores the 

data and is used to return the accumulator's value, but usable only in a driver program. 

In this example, an accumulator variable is used by multiple workers and returns an 

accumulated value. 

-----------------------------------------------accumulator.py-----------------
--------------------------- 

from pyspark import SparkContext 
 

sc = SparkContext("local", "Accumulator app") 
 

num=sc.accumulator(10) 
 

def f(x): 
 

 global num 
 

 num+=x 
 

rdd = sc.parallelize([20,30,40,50]) 
 

rdd.foreach(f) 
 

final = num.value 
 

print "Accumulated value is-> %i" % (final) 

-----------------------------------------------accumulator.py-----------------
--------------------------- 
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Command: The command for an accumulator variable is as follows: 

$SPARK_HOME/bin/spark-submit accumulator.py 

Output: The output for the above command is given below. 

Accumulated value is-> 150 
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To run a Spark application on the local/cluster, you need to set a few configurations and 

parameters, this is what SparkConf helps with. It provides configurations to run a Spark 

application. The following code block has the details of a SparkConf class for PySpark. 

class pyspark.SparkConf(loadDefaults=True, _jvm=None, _jconf=None) 

Initially, we will create a SparkConf object with SparkConf(), which will load the values 

from spark.* Java system properties as well. Now you can set different parameters using 

the SparkConf object and their parameters will take priority over the system properties.  

In a SparkConf class, there are setter methods, which support chaining. For example, you 

can write conf.setAppName(“PySpark App”).setMaster(“local”). Once we pass a 

SparkConf object to Apache Spark, it cannot be modified by any user.  

Following are some of the most commonly used attributes of SparkConf: 

 set(key, value): To set a configuration property. 

 setMaster(value): To set the master URL. 

 setAppName(value): To set an application name. 

 get(key, defaultValue=None): To get a configuration value of a key. 

 setSparkHome(value): To set Spark installation path on worker nodes. 

Let us consider the following example of using SparkConf in a PySpark program. In this 

example, we are setting the spark application name as PySpark App and setting the 

master URL for a spark application to  spark://master:7077. 

The following code block has the lines, when they get added in the Python file, it sets the 

basic configurations for running a PySpark application. 

------------------------------------------------------------------------------
--------------------------------- 

from pyspark import SparkConf, SparkContext 

conf = SparkConf().setAppName("PySpark App").setMaster("spark://master:7077")  

sc = SparkContext(conf=conf) 

------------------------------------------------------------------------------
--------------------------------- 

 

 

 

 

6.PySpark – SparkConf 
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In Apache Spark, you can upload your files using sc.addFile (sc is your default 

SparkContext) and get the path on a worker using SparkFiles.get. Thus, SparkFiles 

resolve the paths to files added through SparkContext.addFile(). 

SparkFiles contain the following classmethods –  

 get(filename) 

 getrootdirectory() 

Let us understand them in detail. 

get(filename)  

It specifies the path of the file that is added through SparkContext.addFile(). 

getrootdirectory()  

It specifies the path to the root directory, which contains the file that is added through the 

SparkContext.addFile(). 

-----------------------------------------------sparkfile.py-------------------
--------------------------- 

from pyspark import SparkContext 

from pyspark import SparkFiles 

finddistance = "/home/hadoop/examples_pyspark/finddistance.R" 

finddistancename = "finddistance.R" 

sc = SparkContext("local", "SparkFile App") 

sc.addFile(finddistance) 

print "Absolute Path -> %s" % SparkFiles.get(finddistancename) 

-----------------------------------------------sparkfile.py-------------------
--------------------------- 

Command: The command is as follows: 

$SPARK_HOME/bin/spark-submit sparkfiles.py 

Output: The output for the above command is: 

Absolute Path -> /tmp/spark-f1170149-af01-4620-9805-f61c85fecee4/userFiles-
641dfd0f-240b-4264-a650-4e06e7a57839/finddistance.R 

 

7.PySpark – SparkFiles 
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StorageLevel decides how RDD should be stored. In Apache Spark, StorageLevel decides 

whether RDD should be stored in the memory or should it be stored over the disk, or both. 

It also decides whether to serialize RDD and whether to replicate RDD partitions.  

The following code block has the class definition of a StorageLevel: 

class pyspark.StorageLevel(useDisk, useMemory, useOffHeap, deserialized, 
replication=1) 

Now, to decide the storage of RDD, there are different storage levels, which are given 

below: 

 DISK_ONLY = StorageLevel(True, False, False, False, 1) 

 DISK_ONLY_2 = StorageLevel(True, False, False, False, 2) 

 MEMORY_AND_DISK = StorageLevel(True, True, False, False, 1) 

 MEMORY_AND_DISK_2 = StorageLevel(True, True, False, False, 2) 

 MEMORY_AND_DISK_SER = StorageLevel(True, True, False, False, 1) 

 MEMORY_AND_DISK_SER_2 = StorageLevel(True, True, False, False, 2) 

 MEMORY_ONLY = StorageLevel(False, True, False, False, 1) 

 MEMORY_ONLY_2 = StorageLevel(False, True, False, False, 2) 

 MEMORY_ONLY_SER = StorageLevel(False, True, False, False, 1) 

 MEMORY_ONLY_SER_2 = StorageLevel(False, True, False, False, 2) 

 OFF_HEAP = StorageLevel(True, True, True, False, 1) 

Let us consider the following example of StorageLevel, where we use the storage level 

MEMORY_AND_DISK_2, which means RDD partitions will have replication of 2. 

-----------------------------------------------storagelevel.py----------------
----------------------------- 

from pyspark import SparkContext 

import pyspark 

sc = SparkContext("local", "storagelevel app") 

rdd1 = sc.parallelize([1,2]) 

rdd1.persist( pyspark.StorageLevel.MEMORY_AND_DISK_2 ) 

rdd1.getStorageLevel() 

print(rdd1.getStorageLevel()) 

-----------------------------------------------storagelevel.py----------------
----------------------------- 

 

8.PySpark – StorageLevel 
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Command: The command is as follows: 

$SPARK_HOME/bin/spark-submit storagelevel.py 

Output: The output for the above command is given below: 

Disk Memory Serialized 2x Replicated 
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Apache Spark offers a Machine Learning API called MLlib. PySpark has this machine 

learning API in Python as well. It supports different kind of algorithms, which are 

mentioned below: 

 mllib.classification: The spark.mllib package supports various methods for 

binary classification, multiclass classification and regression analysis. Some of the 

most popular algorithms in classification are Random Forest, Naive Bayes, 

Decision Tree, etc. 

 

 mllib.clustering: Clustering is an unsupervised learning problem, whereby you 

aim to group subsets of entities with one another based on some notion of 

similarity. 

 

 mllib.fpm: Frequent pattern matching is mining frequent items, itemsets,  

subsequences or other substructures that are usually among the first steps to 

analyze a large-scale dataset. This has been an active research topic in data mining 

for years. 

 

 mllib.linalg: MLlib utilities for linear algebra. 

 

 mllib.recommendation: Collaborative filtering is commonly used for 

recommender systems. These techniques aim to fill in the missing entries of a 

user-item association matrix.  

 

 spark.mllib: It currently supports model-based collaborative filtering, in which 

users and products are described by a small set of latent factors that can be used 

to predict missing entries. spark.mllib uses the Alternating Least Squares (ALS) 

algorithm to learn these latent factors. 

 

 mllib.regression: Linear regression belongs to the family of regression 

algorithms. The goal of regression is to find relationships and dependencies 

between variables. The interface for working with linear regression models and 

model summaries is similar to the logistic regression case. 

There are other algorithms, classes and functions also as a part of the mllib package. As 

of now, let us understand a demonstration on pyspark.mllib. 

The following example is of collaborative filtering using ALS algorithm to build the 

recommendation model and evaluate it on training data. 

Dataset used: test.data 

1,1,5.0 

1,2,1.0 

1,3,5.0 

1,4,1.0 

2,1,5.0 
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2,2,1.0 

2,3,5.0 

2,4,1.0 

3,1,1.0 

3,2,5.0 

3,3,1.0 

3,4,5.0 

4,1,1.0 

4,2,5.0 

4,3,1.0 

4,4,5.0 

 

-----------------------------------------------recommend.py-------------------
-------------------------- 

from __future__ import print_function 

from pyspark import SparkContext 

from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating  

if __name__ == "__main__": 

    sc = SparkContext(appName="Pspark mllib Example") 

    data = sc.textFile("test.data") 

    ratings = data.map(lambda l: l.split(','))\ 

        .map(lambda l: Rating(int(l[0]), int(l[1]), float(l[2]))) 

 

    # Build the recommendation model using Alternating Least Squares 

    rank = 10 

    numIterations = 10 

    model = ALS.train(ratings, rank, numIterations) 

 

    # Evaluate the model on training data 

    testdata = ratings.map(lambda p: (p[0], p[1])) 

    predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]), 
r[2])) 

    ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]), 
r[2])).join(predictions) 

    MSE = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).mean() 

    print("Mean Squared Error = " + str(MSE)) 

 

    # Save and load model 
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    model.save(sc, "target/tmp/myCollaborativeFilter") 

    sameModel = MatrixFactorizationModel.load(sc, 
"target/tmp/myCollaborativeFilter") 

-----------------------------------------------recommend.py-------------------
-------------------------- 

Command: The command will be as follows: 

$SPARK_HOME/bin/spark-submit recommend.py 

Output: The output of the above command will be: 

Mean Squared Error = 1.20536041839e-05 
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Serialization is used for performance tuning on Apache Spark. All data that is sent over 

the network or written to the disk or persisted in the memory should be serialized. 

Serialization plays an important role in costly operations. 

PySpark supports custom serializers for performance tuning. The following two serializers 

are supported by PySpark: 

MarshalSerializer 

Serializes objects using Python’s Marshal Serializer. This serializer is faster than 

PickleSerializer, but supports fewer datatypes. 

class pyspark.MarshalSerializer 

PickleSerializer 

Serializes objects using Python’s Pickle Serializer. This serializer supports nearly any 

Python object, but may not be as fast as more specialized serializers. 

class pyspark.PickleSerializer 

Let us see an example on PySpark serialization. Here, we serialize the data using 

MarshalSerializer. 

-----------------------------------------------serializing.py-----------------
---------------------------- 

from pyspark.context import SparkContext 

from pyspark.serializers import MarshalSerializer 

sc = SparkContext("local", "serialization app", 
serializer=MarshalSerializer()) 

print(sc.parallelize(list(range(1000))).map(lambda x: 2 * x).take(10))  

sc.stop() 

-----------------------------------------------serializing.py-----------------
---------------------------- 

Command: The command is as follows:  

$SPARK_HOME/bin/spark-submit serializing.py 

Output: The output of the above command is: 

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18] 

 

10. PySpark – Serializers 


