

PySpark

i

About the Tutorial

Apache Spark is written in Scala programming language. To support Python with Spark,

Apache Spark community released a tool, PySpark. Using PySpark, you can work with

RDDs in Python programming language also. It is because of a library called Py4j that they

are able to achieve this.

This is an introductory tutorial, which covers the basics of Data-Driven Documents and

explains how to deal with its various components and sub-components.

Audience

This tutorial is prepared for those professionals who are aspiring to make a career in

programming language and real-time processing framework. This tutorial is intended to

make the readers comfortable in getting started with PySpark along with its various

modules and submodules.

Prerequisites

Before proceeding with the various concepts given in this tutorial, it is being assumed that

the readers are already aware about what a programming language and a framework is.

In addition to this, it will be very helpful, if the readers have a sound knowledge of Apache

Spark, Apache Hadoop, Scala Programming Language, Hadoop Distributed File System

(HDFS) and Python.

Copyright and Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

PySpark

ii

Table of Contents

About the Tutorial ...i
Audience..i
Prerequisites ...i
Copyright and Disclaimer ...i
Table of Contents ... i i

1. PySpark – Introduction ...1
Spark – Overview ..1
PySpark – Overview ..1

2. PySpark – Environment Setup ...2

3. PySpark – SparkContext..4

4. PySpark – RDD ..8

5. PySpark – Broadcast & Accumulator .. 14

6. PySpark – SparkConf... 17

7. PySpark – SparkFiles ... 18

8. PySpark – StorageLevel .. 19

9. PySpark – MLlib ... 21

10. PySpark – Serializers... 24

PySpark

1

In this chapter, we will get ourselves acquainted with what Apache Spark is and how was

PySpark developed.

Spark – Overview

Apache Spark is a lightning fast real-time processing framework. It does in-memory

computations to analyze data in real-time. It came into picture as Apache Hadoop

MapReduce was performing batch processing only and lacked a real-time processing

feature. Hence, Apache Spark was introduced as it can perform stream processing in real-

time and can also take care of batch processing.

Apart from real-time and batch processing, Apache Spark supports interactive queries and

iterative algorithms also. Apache Spark has its own cluster manager, where it can host its

application. It leverages Apache Hadoop for both storage and processing. It uses HDFS

(Hadoop Distributed File system) for storage and it can run Spark applications on YARN

as well.

PySpark – Overview

Apache Spark is written in Scala programming language. To support Python with Spark,

Apache Spark Community released a tool, PySpark. Using PySpark, you can work with

RDDs in Python programming language also. It is because of a library called Py4j that

they are able to achieve this.

PySpark offers PySpark Shell which links the Python API to the spark core and initializes

the Spark context. Majority of data scientists and analytics experts today use Python

because of its rich library set. Integrating Python with Spark is a boon to them.

1.PySpark – Introduction

PySpark

2

In this chapter, we will understand the environment setup of PySpark.

Note: This is considering that you have Java and Scala installed on your computer.

Let us now download and set up PySpark with the following steps.

Step 1: Go to the official Apache Spark download page and download the latest version

of Apache Spark available there. In this tutorial, we are using spark-2.1.0-bin-

hadoop2.7.

Step 2: Now, extract the downloaded Spark tar file. By default, it will get downloaded in

Downloads directory.

tar -xvf Downloads/spark-2.1.0-bin-hadoop2.7.tgz

It will create a directory spark-2.1.0-bin-hadoop2.7. Before starting PySpark, you need

to set the following environments to set the Spark path and the Py4j path.

export SPARK_HOME=/home/hadoop/spark-2.1.0-bin-hadoop2.7

export PATH=$PATH:/home/hadoop/spark-2.1.0-bin-hadoop2.7/bin

export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.4-
src.zip:$PYTHONPATH

export PATH=$SPARK_HOME/python:$PATH

Or, to set the above environments globally, put them in the .bashrc file. Then run the

following command for the environments to work.

source .bashrc

Now that we have all the environments set, let us go to Spark directory and invoke PySpark

shell by running the following command:

./bin/pyspark

This will start your PySpark shell.

Python 2.7.12 (default, Nov 19 2016, 06:48:10)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.

Welcome to

 ____ __

 / __/__ ___ _____/ /__

2.PySpark – Environment Setup

http://spark.apache.org/downloads.html

PySpark

3

 _\ \/ _ \/ _ `/ __/ '_/

 /__ / .__/_,_/_/ /_/_\ version 2.1.0

 /_/

Using Python version 2.7.12 (default, Nov 19 2016 06:48:10)

SparkSession available as 'spark'.

>>>

PySpark

4

SparkContext is the entry point to any spark functionality. When we run any Spark

application, a driver program starts, which has the main function and your SparkContext

gets initiated here. The driver program then runs the operations inside the executors on

worker nodes.

SparkContext uses Py4J to launch a JVM and creates a JavaSparkContext. By default,

PySpark has SparkContext available as ‘sc’, so creating a new SparkContext won't work.

3.PySpark – SparkContext

PySpark

5

The following code block has the details of a PySpark class and the parameters, which a

SparkContext can take.

class pyspark.SparkContext(master=None, appName=None, sparkHome=None,
pyFiles=None, environment=None, batchSize=0, serializer=PickleSerializer(),
conf=None, gateway=None, jsc=None, profiler_cls=<class
'pyspark.profiler.BasicProfiler'>)

Parameters

Following are the parameters of a SparkContext.

 Master – It is the URL of the cluster it connects to.

 appName – Name of your job.

 sparkHome – Spark installation directory.

 pyFiles – The .zip or .py files to send to the cluster and add to the PYTHONPATH.

 Environment – Worker nodes environment variables.

 batchSize – The number of Python objects represented as a single Java object.

Set 1 to disable batching, 0 to automatically choose the batch size based on object

sizes, or -1 to use an unlimited batch size.

 Serializer – RDD serializer.

 Conf – An object of L{SparkConf} to set all the Spark properties.

 Gateway – Use an existing gateway and JVM, otherwise initializing a new JVM.

 JSC – The JavaSparkContext instance.

 profiler_cls – A class of custom Profiler used to do profiling (the default is –

pyspark.profiler.BasicProfiler).

Among the above parameters, master and appname are mostly used. The first two lines

of any PySpark program looks as shown below:

from pyspark import SparkContext

sc = SparkContext("local", "First App")

SparkContext Example – PySpark Shell

Now that you know enough about SparkContext, let us run a simple example on PySpark

shell. In this example, we will be counting the number of lines with character 'a' or 'b' in

the README.md file. So, let us say if there are 5 lines in a file and 3 lines have the

character 'a', then the output will be  Line with a: 3. Same will be done for character

‘b’.

PySpark

6

Note: We are not creating any SparkContext object in the following example because by

default, Spark automatically creates the SparkContext object named sc, when PySpark

shell starts. In case you try to create another SparkContext object, you will get the

following error – "ValueError: Cannot run multiple SparkContexts at once".

>>> logFile = "file:///home/hadoop/spark-2.1.0-bin-hadoop2.7/README.md"

>>> logData = sc.textFile(logFile).cache()

>>> numAs = logData.filter(lambda s: 'a' in s).count()

>>> numBs = logData.filter(lambda s: 'b' in s).count()

>>> print "Lines with a: %i, lines with b: %i" % (numAs, numBs)

Lines with a: 62, lines with b: 30

SparkContext Example - Python Program

Let us run the same example using a Python program. Create a Python file called

firstapp.py and enter the following code in that file.

---firstapp.py--------------------

from pyspark import SparkContext

logFile = "file:///home/hadoop/spark-2.1.0-bin-hadoop2.7/README.md"

sc = SparkContext("local", "first app")

logData = sc.textFile(logFile).cache()

numAs = logData.filter(lambda s: 'a' in s).count()

numBs = logData.filter(lambda s: 'b' in s).count()

print "Lines with a: %i, lines with b: %i" % (numAs, numBs)

---firstapp.py--------------------

PySpark

7

Then we will execute the following command in the terminal to run this Python file. We

will get the same output as above.

$SPARK_HOME/bin/spark-submit firstapp.py

Output: Lines with a: 62, lines with b: 30

PySpark

8

Now that we have installed and configured PySpark on our system, we can program in

Python on Apache Spark. However before doing so, let us understand a fundamental

concept in Spark - RDD.

RDD stands for Resilient Distributed Dataset, these are the elements that run and

operate on multiple nodes to do parallel processing on a cluster. RDDs are immutable

elements, which means once you create an RDD you cannot change it. RDDs are fault

tolerant as well, hence in case of any failure, they recover automatically. You can apply

multiple operations on these RDDs to achieve a certain task.

To apply operations on these RDD's, there are two ways:

 Transformation and

 Action

Let us understand these two ways in detail.

Transformation: These are the operations, which are applied on a RDD to create a new

RDD. Filter, groupBy and map are the examples of transformations.

Action: These are the operations that are applied on RDD, which instructs Spark to

perform computation and send the result back to the driver.

To apply any operation in PySpark, we need to create a PySpark RDD first. The following

code block has the detail of a PySpark RDD Class:

class pyspark.RDD(jrdd, ctx,
jrdd_deserializer=AutoBatchedSerializer(PickleSerializer()))

Let us see how to run a few basic operations using PySpark. The following code in a Python

file creates RDD words, which stores a set of words mentioned.

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs
hadoop", "pyspark","pyspark and spark"])

We will now run a few operations on words.

count()

Number of elements in the RDD is returned.

---count.py-----------------------

from pyspark import SparkContext

sc = SparkContext("local", "count app")

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs
hadoop", "pyspark","pyspark and spark"])

counts = words.count()

4.PySpark – RDD

PySpark

9

print "Number of elements in RDD -> %i" % (counts)

---count.py-----------------------

Command: The command for count() is –

$SPARK_HOME/bin/spark-submit count.py

Output: The output for the above command is –

Number of elements in RDD -> 8

collect()

All the elements in the RDD are returned.

---collect.py---------------------

from pyspark import SparkContext

sc = SparkContext("local", "Collect app")

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs
hadoop", "pyspark","pyspark and spark"])

coll = words.collect()

print "Elements in RDD -> %s" % (coll)

---collect.py---------------------

Command: The command for collect() is –

$SPARK_HOME/bin/spark-submit collect.py

Output: The output for the above command is –

Elements in RDD -> ['scala', 'java', 'hadoop', 'spark', 'akka', 'spark vs
hadoop', 'pyspark', 'pyspark and spark']

foreach(f)

Returns only those elements which meet the condition of the function inside foreach. In

the following example, we call a print function in foreach, which prints all the elements in

the RDD.

---foreach.py---------------------

from pyspark import SparkContext

sc = SparkContext("local", "ForEach app")

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs
hadoop", "pyspark","pyspark and spark"])

PySpark

10

def f(x): print(x)

fore = words.foreach(f)

---foreach.py---------------------

Command: The command for foreach(f) is –

$SPARK_HOME/bin/spark-submit foreach.py

Output: The output for the above command is –

scala

java

hadoop

spark

akka

spark vs hadoop

pyspark

pyspark and spark

filter(f)

A new RDD is returned containing the elements, which satisfies the function inside the

filter. In the following example, we filter out the strings containing ''spark".

---filter.py----------------------

from pyspark import SparkContext

sc = SparkContext("local", "Filter app")

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs
hadoop", "pyspark","pyspark and spark"])

words_filter = words.filter(lambda x: 'spark' in x)

filtered = words_filter.collect()

print "Fitered RDD -> %s" % (filtered)

---filter.py----------------------

Command: The command for filter(f) is –

$SPARK_HOME/bin/spark-submit filter.py

Output: The output for the above command is –

Fitered RDD -> ['spark', 'spark vs hadoop', 'pyspark', 'pyspark and spark']

PySpark

11

map(f, preservesPartitioning=False)

A new RDD is returned by applying a function to each element in the RDD. In the following

example, we form a key value pair and map every string with a value of 1.

---map.py-------------------------

from pyspark import SparkContext

sc = SparkContext("local", "Map app")

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs
hadoop", "pyspark","pyspark and spark"])

words_map = words.map(lambda x: (x, 1))

mapping = words_map.collect()

print "Key value pair -> %s" % (mapping)

---map.py-------------------------

Command: The command for map(f, preservesPartitioning=False) is –

$SPARK_HOME/bin/spark-submit map.py

Output: The output of the above command is –

Key value pair -> [('scala', 1), ('java', 1), ('hadoop', 1), ('spark', 1),
('akka', 1), ('spark vs hadoop', 1), ('pyspark', 1), ('pyspark and spark', 1)]

reduce(f)

After performing the specified commutative and associative binary operation, the element

in the RDD is returned. In the following example, we are importing add package from the

operator and applying it on ‘num’ to carry out a simple addition operation.

---reduce.py----------------------

from pyspark import SparkContext

from operator import add

sc = SparkContext("local", "Reduce app")

nums = sc.parallelize([1, 2, 3, 4, 5])

adding = nums.reduce(add)

print "Adding all the elements -> %i" % (adding)

---reduce.py----------------------

Command: The command for reduce(f) is –

$SPARK_HOME/bin/spark-submit reduce.py

PySpark

12

Output: The output of the above command is –

Adding all the elements -> 15

join(other, numPartitions=None)

It returns RDD with a pair of elements with the matching keys and all the values for that

particular key. In the following example, there are two pair of elements in two different

RDDs. After joining these two RDDs, we get an RDD with elements having matching keys

and their values.

---join.py------------------------

from pyspark import SparkContext

sc = SparkContext("local", "Join app")

x = sc.parallelize([("spark", 1), ("hadoop", 4)])

y = sc.parallelize([("spark", 2), ("hadoop", 5)])

joined = x.join(y)

final = joined.collect()

print "Join RDD -> %s" % (final)

---join.py------------------------

Command: The command for join(other, numPartitions=None) is –

$SPARK_HOME/bin/spark-submit join.py

Output: The output for the above command is –

Join RDD -> [('spark', (1, 2)), ('hadoop', (4, 5))]

cache()

Persist this RDD with the default storage level (MEMORY_ONLY). You can also check if the

RDD is cached or not.

---cache.py-----------------------

from pyspark import SparkContext

sc = SparkContext("local", "Cache app")

words = sc.parallelize(["scala", "java", "hadoop", "spark", "akka","spark vs
hadoop", "pyspark","pyspark and spark"])

words.cache()

PySpark

13

caching = words.persist().is_cached

print "Words got chached -> %s" % (caching)

---cache.py-----------------------

Command: The command for cache() is –

$SPARK_HOME/bin/spark-submit cache.py

Output: The output for the above program is –

Words got cached -> True

These were some of the most important operations that are done on PySpark RDD.

PySpark

14

For parallel processing, Apache Spark uses shared variables. A copy of shared variable

goes on each node of the cluster when the driver sends a task to the executor on the

cluster, so that it can be used for performing tasks.

There are two types of shared variables supported by Apache Spark –

 Broadcast

 Accumulator

Let us understand them in detail.

Broadcast

Broadcast variables are used to save the copy of data across all nodes. This variable is

cached on all the machines and not sent on machines with tasks. The following code block

has the details of a Broadcast class for PySpark.

class pyspark.Broadcast(sc=None, value=None, pickle_registry=None, path=None)

The following example shows how to use a Broadcast variable. A Broadcast variable has

an attribute called value, which stores the data and is used to return a broadcasted value.

---broadcast.py-------------------

from pyspark import SparkContext

sc = SparkContext("local", "Broadcast app")

words_new = sc.broadcast(["scala", "java", "hadoop", "spark", "akka"])

data = words_new.value

print "Stored data -> %s" % (data)

elem = words_new.value[2]

print "Printing a particular element in RDD -> %s" % (elem)

---broadcast.py-------------------

Command: The command for a broadcast variable is as follows:

$SPARK_HOME/bin/spark-submit broadcast.py

5.PySpark – Broadcast & Accumulator

PySpark

15

Output: The output for the following command is given below.

Stored data -> ['scala', 'java', 'hadoop', 'spark', 'akka']

Printing a particular element in RDD -> hadoop

Accumulator

Accumulator variables are used for aggregating the information through associative and

commutative operations. For example, you can use an accumulator for a sum operation

or counters (in MapReduce). The following code block has the details of an Accumulator

class for PySpark.

class pyspark.Accumulator(aid, value, accum_param)

The following example shows how to use an Accumulator variable. An Accumulator variable

has an attribute called value that is similar to what a broadcast variable has. It stores the

data and is used to return the accumulator's value, but usable only in a driver program.

In this example, an accumulator variable is used by multiple workers and returns an

accumulated value.

---accumulator.py-----------------

from pyspark import SparkContext

sc = SparkContext("local", "Accumulator app")

num=sc.accumulator(10)

def f(x):

 global num

 num+=x

rdd = sc.parallelize([20,30,40,50])

rdd.foreach(f)

final = num.value

print "Accumulated value is-> %i" % (final)

---accumulator.py-----------------

PySpark

16

Command: The command for an accumulator variable is as follows:

$SPARK_HOME/bin/spark-submit accumulator.py

Output: The output for the above command is given below.

Accumulated value is-> 150

PySpark

17

To run a Spark application on the local/cluster, you need to set a few configurations and

parameters, this is what SparkConf helps with. It provides configurations to run a Spark

application. The following code block has the details of a SparkConf class for PySpark.

class pyspark.SparkConf(loadDefaults=True, _jvm=None, _jconf=None)

Initially, we will create a SparkConf object with SparkConf(), which will load the values

from spark.* Java system properties as well. Now you can set different parameters using

the SparkConf object and their parameters will take priority over the system properties.

In a SparkConf class, there are setter methods, which support chaining. For example, you

can write conf.setAppName(“PySpark App”).setMaster(“local”). Once we pass a

SparkConf object to Apache Spark, it cannot be modified by any user.

Following are some of the most commonly used attributes of SparkConf:

 set(key, value): To set a configuration property.

 setMaster(value): To set the master URL.

 setAppName(value): To set an application name.

 get(key, defaultValue=None): To get a configuration value of a key.

 setSparkHome(value): To set Spark installation path on worker nodes.

Let us consider the following example of using SparkConf in a PySpark program. In this

example, we are setting the spark application name as PySpark App and setting the

master URL for a spark application to  spark://master:7077.

The following code block has the lines, when they get added in the Python file, it sets the

basic configurations for running a PySpark application.

--

from pyspark import SparkConf, SparkContext

conf = SparkConf().setAppName("PySpark App").setMaster("spark://master:7077")

sc = SparkContext(conf=conf)

--

6.PySpark – SparkConf

PySpark

18

In Apache Spark, you can upload your files using sc.addFile (sc is your default

SparkContext) and get the path on a worker using SparkFiles.get. Thus, SparkFiles

resolve the paths to files added through SparkContext.addFile().

SparkFiles contain the following classmethods –

 get(filename)

 getrootdirectory()

Let us understand them in detail.

get(filename)

It specifies the path of the file that is added through SparkContext.addFile().

getrootdirectory()

It specifies the path to the root directory, which contains the file that is added through the

SparkContext.addFile().

---sparkfile.py-------------------

from pyspark import SparkContext

from pyspark import SparkFiles

finddistance = "/home/hadoop/examples_pyspark/finddistance.R"

finddistancename = "finddistance.R"

sc = SparkContext("local", "SparkFile App")

sc.addFile(finddistance)

print "Absolute Path -> %s" % SparkFiles.get(finddistancename)

---sparkfile.py-------------------

Command: The command is as follows:

$SPARK_HOME/bin/spark-submit sparkfiles.py

Output: The output for the above command is:

Absolute Path -> /tmp/spark-f1170149-af01-4620-9805-f61c85fecee4/userFiles-
641dfd0f-240b-4264-a650-4e06e7a57839/finddistance.R

7.PySpark – SparkFiles

PySpark

19

StorageLevel decides how RDD should be stored. In Apache Spark, StorageLevel decides

whether RDD should be stored in the memory or should it be stored over the disk, or both.

It also decides whether to serialize RDD and whether to replicate RDD partitions.

The following code block has the class definition of a StorageLevel:

class pyspark.StorageLevel(useDisk, useMemory, useOffHeap, deserialized,
replication=1)

Now, to decide the storage of RDD, there are different storage levels, which are given

below:

 DISK_ONLY = StorageLevel(True, False, False, False, 1)

 DISK_ONLY_2 = StorageLevel(True, False, False, False, 2)

 MEMORY_AND_DISK = StorageLevel(True, True, False, False, 1)

 MEMORY_AND_DISK_2 = StorageLevel(True, True, False, False, 2)

 MEMORY_AND_DISK_SER = StorageLevel(True, True, False, False, 1)

 MEMORY_AND_DISK_SER_2 = StorageLevel(True, True, False, False, 2)

 MEMORY_ONLY = StorageLevel(False, True, False, False, 1)

 MEMORY_ONLY_2 = StorageLevel(False, True, False, False, 2)

 MEMORY_ONLY_SER = StorageLevel(False, True, False, False, 1)

 MEMORY_ONLY_SER_2 = StorageLevel(False, True, False, False, 2)

 OFF_HEAP = StorageLevel(True, True, True, False, 1)

Let us consider the following example of StorageLevel, where we use the storage level

MEMORY_AND_DISK_2, which means RDD partitions will have replication of 2.

---storagelevel.py----------------

from pyspark import SparkContext

import pyspark

sc = SparkContext("local", "storagelevel app")

rdd1 = sc.parallelize([1,2])

rdd1.persist(pyspark.StorageLevel.MEMORY_AND_DISK_2)

rdd1.getStorageLevel()

print(rdd1.getStorageLevel())

---storagelevel.py----------------

8.PySpark – StorageLevel

PySpark

20

Command: The command is as follows:

$SPARK_HOME/bin/spark-submit storagelevel.py

Output: The output for the above command is given below:

Disk Memory Serialized 2x Replicated

PySpark

21

Apache Spark offers a Machine Learning API called MLlib. PySpark has this machine

learning API in Python as well. It supports different kind of algorithms, which are

mentioned below:

 mllib.classification: The spark.mllib package supports various methods for

binary classification, multiclass classification and regression analysis. Some of the

most popular algorithms in classification are Random Forest, Naive Bayes,

Decision Tree, etc.

 mllib.clustering: Clustering is an unsupervised learning problem, whereby you

aim to group subsets of entities with one another based on some notion of

similarity.

 mllib.fpm: Frequent pattern matching is mining frequent items, itemsets,

subsequences or other substructures that are usually among the first steps to

analyze a large-scale dataset. This has been an active research topic in data mining

for years.

 mllib.linalg: MLlib utilities for linear algebra.

 mllib.recommendation: Collaborative filtering is commonly used for

recommender systems. These techniques aim to fill in the missing entries of a

user-item association matrix.

 spark.mllib: It currently supports model-based collaborative filtering, in which

users and products are described by a small set of latent factors that can be used

to predict missing entries. spark.mllib uses the Alternating Least Squares (ALS)

algorithm to learn these latent factors.

 mllib.regression: Linear regression belongs to the family of regression

algorithms. The goal of regression is to find relationships and dependencies

between variables. The interface for working with linear regression models and

model summaries is similar to the logistic regression case.

There are other algorithms, classes and functions also as a part of the mllib package. As

of now, let us understand a demonstration on pyspark.mllib.

The following example is of collaborative filtering using ALS algorithm to build the

recommendation model and evaluate it on training data.

Dataset used: test.data

1,1,5.0

1,2,1.0

1,3,5.0

1,4,1.0

2,1,5.0

9.PySpark – MLlib

PySpark

22

2,2,1.0

2,3,5.0

2,4,1.0

3,1,1.0

3,2,5.0

3,3,1.0

3,4,5.0

4,1,1.0

4,2,5.0

4,3,1.0

4,4,5.0

---recommend.py-------------------

from __future__ import print_function

from pyspark import SparkContext

from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating

if __name__ == "__main__":

 sc = SparkContext(appName="Pspark mllib Example")

 data = sc.textFile("test.data")

 ratings = data.map(lambda l: l.split(','))\

 .map(lambda l: Rating(int(l[0]), int(l[1]), float(l[2])))

 # Build the recommendation model using Alternating Least Squares

 rank = 10

 numIterations = 10

 model = ALS.train(ratings, rank, numIterations)

 # Evaluate the model on training data

 testdata = ratings.map(lambda p: (p[0], p[1]))

 predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]),
r[2]))

 ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]),
r[2])).join(predictions)

 MSE = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).mean()

 print("Mean Squared Error = " + str(MSE))

 # Save and load model

PySpark

23

 model.save(sc, "target/tmp/myCollaborativeFilter")

 sameModel = MatrixFactorizationModel.load(sc,
"target/tmp/myCollaborativeFilter")

---recommend.py-------------------

Command: The command will be as follows:

$SPARK_HOME/bin/spark-submit recommend.py

Output: The output of the above command will be:

Mean Squared Error = 1.20536041839e-05

PySpark

24

Serialization is used for performance tuning on Apache Spark. All data that is sent over

the network or written to the disk or persisted in the memory should be serialized.

Serialization plays an important role in costly operations.

PySpark supports custom serializers for performance tuning. The following two serializers

are supported by PySpark:

MarshalSerializer

Serializes objects using Python’s Marshal Serializer. This serializer is faster than

PickleSerializer, but supports fewer datatypes.

class pyspark.MarshalSerializer

PickleSerializer

Serializes objects using Python’s Pickle Serializer. This serializer supports nearly any

Python object, but may not be as fast as more specialized serializers.

class pyspark.PickleSerializer

Let us see an example on PySpark serialization. Here, we serialize the data using

MarshalSerializer.

---serializing.py-----------------

from pyspark.context import SparkContext

from pyspark.serializers import MarshalSerializer

sc = SparkContext("local", "serialization app",
serializer=MarshalSerializer())

print(sc.parallelize(list(range(1000))).map(lambda x: 2 * x).take(10))

sc.stop()

---serializing.py-----------------

Command: The command is as follows:

$SPARK_HOME/bin/spark-submit serializing.py

Output: The output of the above command is:

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

10. PySpark – Serializers

