- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove the following:
$ 1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha $
To do:
We have to prove that \( 1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=\operatorname{cosec} \alpha \).
Solution:
We know that,
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
Therefore,
$1+\frac{\cot ^{2} \alpha}{1+\operatorname{cosec} \alpha}=1+\frac{\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}}{1+\frac{1}{\sin \alpha}}$
$=1+\frac{\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}}{\frac{\sin \alpha+1}{\sin \alpha}}$
$=1+\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha} \times \frac{\sin \alpha}{\sin \alpha+1}$
$=1+\frac{\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$
$=\frac{\sin \alpha(\sin \alpha+1)+\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$
$=\frac{\sin^2 \alpha+\sin \alpha+\cos ^{2} \alpha}{\sin \alpha(\sin \alpha+1)}$
$=\frac{1+\sin \alpha}{\sin \alpha(\sin \alpha+1)}$
$=\frac{1}{\sin \alpha}$
$=\operatorname{cosec} \alpha$
Hence proved.
- Related Articles
- Prove the following:\( (\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)=\sec \alpha+\operatorname{cosec} \alpha \)
- Prove that:\( 1+\frac{\cot ^{2} \theta}{1+\operatorname{cosec} \theta}=\operatorname{cosec} \theta \)
- Prove that:\( \frac{\operatorname{cosec} A}{\operatorname{cosec} A-1}+\frac{\operatorname{cosec} A}{\operatorname{cosec} A+1}=2 \sec ^{2} A \)
- Prove that:\( \frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1} \)
- Prove the following trigonometric identities:\( \operatorname{cosec}^{6} \theta=\cot ^{6} \theta+3 \cot ^{2} \theta \operatorname{cosec}^{2} \theta+1 \)
- Prove the following identities:If \( \operatorname{cosec} \theta+\cot \theta=m \) and \( \operatorname{cosec} \theta-\cot \theta=n \), prove that \( m n=1 \)
- Prove that:\( \frac{\cos \theta}{\operatorname{cosec} \theta+1}+\frac{\cos \theta}{\operatorname{cosec} \theta-1}=2 \tan \theta \)
- Prove that:\( \frac{1-\cos A}{1+\cos A}=(\cot A-\operatorname{cosec} A)^{2} \)
- Prove that:\( \frac{1}{\sec A-1}+\frac{1}{\sec A+1}=2 \operatorname{cosec} A \cot A \)
- Prove the following identities:\( (1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A) = 2 \)
- Prove that:\( \cot ^{2} A \operatorname{cosec}^{2} B-\cot ^{2} B \operatorname{cosec}^{2} A=\cot ^{2} A-\cot ^{2} B \)
- Prove the following identities:\( (\sec A-\operatorname{cosec} A)(1+\tan A+\cot A)=\tan A \sec A-\cot A \operatorname{cosec} A \)
- Prove the following identities:\( (\operatorname{cosec} \theta-\sec \theta)(\cot \theta-\tan \theta)=(\operatorname{cosec} \theta+\sec \theta)(\sec \theta \operatorname{cosec} \theta-2) \)
- Prove the following identity:\( (1+\tan A)^2+(1+\cot A)^2=(\sec A+\operatorname{cosec} A)^2 \)
- If \( \cot \theta=\frac{3}{4} \), prove that \( \sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\frac{1}{\sqrt{7}} \)
