- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that $\sqrt3 + \sqrt5$ is irrational.
Given:
$\sqrt3\ +\ \sqrt5$
To do:
We have to prove that $\sqrt3\ +\ \sqrt5$ is an irrational number.
Solution:
Let us assume, to the contrary, that $\sqrt3\ +\ \sqrt5$ is rational.
So, we can find integers a and b ($≠$ 0) such that $\sqrt5\ +\ \sqrt3\ =\ \frac{a}{b}$.
Where a and b are co-prime.
Now,
$\sqrt5\ +\ \sqrt3\ =\ \frac{a}{b}$
$\sqrt3\ =\ \frac{a}{b}\ -\ \sqrt5$
Squaring both sides:
$(\sqrt{3} )^{2} \ =\ \left(\frac{a}{b} \ -\ \sqrt{5}\right)^{2}$
$3\ =\ \left(\frac{a}{b}\right)^{2} \ +\ 5\ -\ 2\sqrt{5}\left(\frac{a}{b}\right)$
$3\ =\ \frac{a^{2}}{b^{2}} \ +\ 5\ -\ 2\sqrt{5}\left(\frac{a}{b}\right)$
$2\sqrt{5}\left(\frac{a}{b}\right) \ =\ \frac{a^{2}}{b^{2}} \ +\ 5\ -\ 3$
$2\sqrt{5}\left(\frac{a}{b}\right) \ =\ \frac{a^{2}}{b^{2}} \ +\ 2$
$2\sqrt{5}\left(\frac{a}{b}\right) \ =\ \frac{a^{2} \ +\ 2b^{2}}{b^{2}}$
$\sqrt{5} \ =\ \frac{a^{2} \ +\ 2b^{2}}{b^{2}} \ \times \ \frac{b}{2a}$
$\sqrt{5} \ =\ \frac{a^{2} \ +\ 2b^{2}}{2ab}$
Here, $\frac{a^{2} \ +\ 2b^{2}}{2ab}$ is a rational number but $\sqrt{5}$ is irrational number.
But, Rational number $≠$ Irrational number.
This contradiction has arisen because of our incorrect assumption that $\sqrt3\ +\ \sqrt5$ is rational.
So, this proves that $\sqrt3\ +\ \sqrt5$ is an irrational number.
- Related Articles
- Prove that $\sqrt5 + \sqrt3$ is irrational.
- Prove that $\sqrt5$ is irrational.
- Prove that $\sqrt2 + \sqrt3$ is irrational.
- Prove that $3 + 2\sqrt5$ is irrational.
- Prove that $3+2 \sqrt5$ is irrational.
- Prove that $2\sqrt3 − 1$ is an irrational number.
- Simplify the following expressions:$(\sqrt5-2)(\sqrt3-\sqrt5)$
- Prove That √5 Is Irrational
- Prove That The no. Is Irrational
- Prove that root 2 Is Irrational.
- Prove that $5-\sqrt{3}$ is irrational.
- Prove that $\frac{1}{\sqrt{5}}$ is irrational.
- Prove that $3+2\sqrt{3}$ is irrational.
- Prove that is $\sqrt{2}$ an irrational number.
- Given that $\sqrt{2}$ is irrational, prove that$( 5+3\sqrt{2})$ is an irrational number.
