

1

Protobuf – Table of Contents ... 1

Overview ... 3

Audience ... 3

Prerequisite ... 3

1. Protobuf – Introduction .. 4

What is Serialization and Deserialization? ... 4

Why do we need Serialization and Deserialization? ... 4

Why Google Protobuf? ... 4

Protobuf vs Others (XML/JSON/Java serialization) ... 5

2. Protobuf – Basic App ... 6

Protocol Buffer Definition file ... 6

Protocol Buffer Code Generation .. 7

Project Structure ... 8

Greeting App in Java ... 9

Greeting App in Python... 14

3. Protobuf – Constructs ... 17

4. Protobuf – Class/Member ... 18

5. Protobuf – Strings ... 20

6. Protobuf – Numbers ... 24

7. Protobuf – Boolean ... 28

8. Protobuf – Enum ... 32

9. Protobuf – List/Repeated .. 36

10. Protobuf – Map ... 40

Protobuf – Table of Contents

2

11. Protobuf – Nested Class .. 44

12. Protobuf – Optionality and Defaults.. 48

13. Protobuf – Language Independence .. 54

Serialization using Java ... 55

Deserialization using Python .. 58

14. Protobuf – Compound Data Types .. 63

OneOf ... 63

Any .. 68

15. Protobuf – Command Line Usage .. 75

16. Protobuf – Rules to Update Definition .. 77

Unknown Fields .. 80

Deleting a Field ... 81

Avoid Reusing Serial Number of the Field ... 86

Changing the Field Type ... 90

17. Protobuf – Integration with Kafka ... 95

Schema Registry ... 95

Kafka Producer with Protobuf Schema ... 96

Kafka Consumer with Protobuf Schema ... 103

18. Protobuf – In Other Languages .. 107

Using Google Protobuf in Go Lang ... 107

Using Google Protobuf in Dart ... 109

3

Overview

Protocol Buffers is a library from Google. It provides efficient and

language-independent ways to serialize the data. It supports serialization and

deserialization from languages like Java, Python, Go, Dart, etc. It is one of the

most popular serialization libraries used across industries by various companies.

The major use-case for Google Protocol Buffers is the serialization and

deserialization of data which is simple and fast. Serialization and Deserialization

becomes a very important piece in microservices/distributed environment where

lot of data is transferred across services. That is why, it becomes a very useful

library in developing applications which require high scalability and performance.

Audience

This tutorial deep dives into various components that make Google Protocol

Buffers a very useful library. It is directed towards software professionals who want

to develop highly scalable and performant applications. Post this tutorial, you

would have intermediate knowledge of Protocol Buffers and its usage.

Prerequisite

To learn from this tutorial, you need to have a good hold over Java or Python and

a basic knowledge of data structure is preferable.

4

Before we jump into Protocol Buffer, let us go over a brief background of

Serialization which is what Protocol Buffer does.

What is Serialization and Deserialization?

Serialization is the process of converting an object (of any language) into bytes

and storing them in persistent memory system. This memory system could be a

file on the disk, messaging queue or a database. The major intention with

serialization of object is that we can reuse the data and recreate the object on

same or different machine. In deserialization, we convert the stored bytes back to

an object.

Why do we need Serialization and Deserialization?

While there are a few other use-cases, the most basic and important one is that it

provides a way to transfer object data over a network to a different service/machine

etc. and then to recreate object for its further use. Transferring object data via API,

database or messaging queue requires the object to be converted into bytes so

that it can be sent over a network. And this is where serialization becomes

important.

In microservice architecture, the application is broken down into small services and

these services communicate with each other via messaging queue and APIs. And

all of this communication happens over a network which requires frequent

conversion of object to bytes and back to objects. So, serialization and

deserialization becomes very critical aspects when it comes to distributed

environment.

Why Google Protobuf?

Google Protobuf performs the serialization and deserialization of the objects to

bytes which can be transferred over the network. But there are some other libraries

and mechanisms to transfer data as well.

So, what makes Google Protobuf special? Here are some of its important features:

1. Protobuf – Introduction

5

 Language independent: Multiple languages have protobuf library, few
famous ones being Java, Python, Go, etc. So, a Java object can be
serialized into bytes from a Java program and can be deserialized to a a
Python object.

 Efficient Data Compaction: In microservice environment, given that
multiple communications take place over a network, it is critical that the
data that we are sending is as succinct as possible. We need to avoid any
superfluous information to ensure that the data is quickly transferred.
Google Protobuf has that as one of the focus areas.

 Efficient serialization and deserialization: In microservice environment,
given that multiple communications take place over a network, it is critical
how fast can we serialize and deserialize. Google Protobuf ensures that it
is as quick as possible in serializing and deserializing the data.

 Simple to use: Protobuf library auto-generates serialization code (as we
will see in the upcoming chapters), has a versioning scheme to ensure that
the creator of data and the user of data can have separate versions of the
serialization definition, etc.

Protobuf vs Others (XML/JSON/Java serialization)

Let's take a look how other ways to transfer data over a network stack up against

Protobuf

Feature Protobuf JSON XML

Language
independent

Yes Yes Yes

Serialized data
size

Least of three Less than XML
Highest among
the three

Human
Readable

No, as it uses
separate encoding
schema

Yes, as it uses
text based format

Yes, as it uses
text based
format

Serialization
speed

Fastest among the
three

Faster than XML
Slowest among
the three

Data type
support

Richer than other
two. Supports
complex data types
like Any, one of etc.

Supports basic
data types

Supports basic
data types

Support for
evolving schema

Yes No No

6

Let us now use Google Protocol Buffer and see how it works with a simple Greeting

app. In this example, we will create a simple application which would do the

following:

 Greeting the Writer:

o Take greeting and username from the user

o Store the above information in a file in the disk

 Greeting Reader:

o Reads the same file which we stored in the above file

o Convert that data into an object and print the data

Protocol Buffer Definition file

The protocol buffer "definition file" contains the schema definition of the data we

want to serialize. The data is stored in a human readable file with the extension

".proto".

Let us store the following data in "greeting.proto" and we will use this in our first

application.

syntax = "proto3";

package tutorial;

option java_package = "com.tutorialspoint.greeting";

message Greet {

 string greeting = 1;

 string username = 2;

}

2. Protobuf – Basic App

7

Now, let us take a closer look at the data and see what each line of code does in

the above code block.

syntax = "proto3";

The "syntax" here represents what version of Protobuf we are using. So, we are

using the latest version 3 and the schema thus can use all the syntax which is valid

for version 3.

package tutorial;

The package here is used for conflict resolution if, say, we have multiple

classes/members with same name.

option java_package = "com.tutorialspoint.greeting";

This argument is specific to Java, i.e., the package where the code from the

".proto" file will be auto-generated.

message Greet

Name of the base class for the object which would be created/recreated.

string greeting = 1;

string username = 2;

These are the attributes of the Greet class along with the data type and the position

of the tag in the schema. If a new tag is to be added, it should have "3" as the

position. Note that this position integer is important to ensure that the actual data

is compact and there is scope of schema evolution.

Protocol Buffer Code Generation

Now that we have defined, let us install the "proto" binary which we will use to

auto-generate the code for the above Greet class. The binaries can be found at

"https://github.com/protocolbuffers/protobuf/releases/".

Choose the correct binary based on the OS. We will install proto binary on

Windows but the steps are not very different for Linux.

Once installed, ensure that you are able to access it via command line:

protoc --version

libprotoc 3.15.6

8

It confirms that Protobuf is correctly installed. Now let us move to creating the

Greeting app described above for Java.

Project Structure

Here is the overall project structure that we would have:

Code related to individual languages go to their respective directories. And we

have a separate directory to store our "proto" files.

And here is the project structure that we would be having for Java:

9

Greeting App in Java

Now that we have installed protoc, we can auto-generate the code from the proto

files using protoc. Let us first create a Java project though.

Following is the Maven configuration that we will use for our Java project. Note

that it contains the required library for Protobuf as well.

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

10

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.tutorials.point</groupId>

 <artifactId>protobuf-tutorial</artifactId>

 <version>1.0</version>

 <packaging>jar</packaging>

 <properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 </properties>

 <dependencies>

 <!--

https://mvnrepository.com/artifact/com.google.protobuf/protobuf-

java -->

 <dependency>

 <groupId>com.google.protobuf</groupId>

 <artifactId>protobuf-java</artifactId>

 <version>3.15.8</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-shade-plugin</artifactId>

 <version>3.2.4</version>

 <configuration>

11

 <!--Put your configurations here-->

 </configuration>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>shade</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

All of our code would be present under src/main/java.

With the project structure out of the way, let us generate the code for the Greet

class:

protoc --java_out=java/src/main/java proto_files/greeting.proto

Post execution of the command, you will notice two auto-generated classes.

 Greeting.java

 GreetOrBuilder.java

These two classes would help us with serialization and deserialization of the Greet

object.

Now, let us write the writer of the data, which will take the username and the

greeting as its inputs:

package com.tutorialspoint.greeting;

import java.io.FileOutputStream;

import java.io.IOException;

12

import com.tutorialspoint.greeting.Greeting.Greet;

public class GreetWriter{

 public static void main(String[] args) throws IOException {

 Greet greeting = Greet.newBuilder()

 .setGreeting(args[0])

 .setUsername(args[1])

 .build();

 String filename = "greeting_protobuf_output";

 System.out.println("Saving greeting to file: " + filename);

 try(FileOutputStream output = new

FileOutputStream(filename)){

 greeting.writeTo(output);

 }

 System.out.println("Saved greeting with following data to

disk: \n" + greeting);

 }

}

The writer simply takes CLI arguments, creates the Greet object, serializes it and

then dumps it to a file.

Now let us write a reader which will read the file:

package com.tutorialspoint.greeting;

import java.io.FileInputStream;

import java.io.IOException;

13

import com.tutorialspoint.greeting.Greeting.Greet;

public class GreetReader{

 public static void main(String[] args) throws IOException {

 Greet.Builder greetBuilder = Greet.newBuilder();

 String filename = "greeting_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new

FileInputStream(filename)) {

 Greet greet = greetBuilder.mergeFrom(input).build();

 System.out.println("Greeting: " + greet.getGreeting() + "\n" +

 "Username: " + greet.getUsername());

 }

 }

}

The reader simply reads from the same file, deserializes it, and prints the data

about the greeting.

Now that we have set up the reader and the writer, let us compile the project.

mvn clean install

And now, let us first execute the writer.

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.greeting.GreetWriter Hello John

Saving greeting to file:

greeting_protobuf_output

14

Saved greeting with following data to disk:

greeting: Hello

username: John

And then, let us execute the reader

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.greeting.GreetReader

Reading from file greeting_protobuf_output

Greeting: Hello

Username: John

So, as we see the data that was serialized by the writer and saved to the file, that

exact data is correctly deserialized by the reader and printed accordingly.

Greeting App in Python

Let us now write the same example as a Python project:

We will need to install protobuf pip package before we proceed.

pip install protobuf

All of our code would be present under "google-protobuf/python".

With the project structure out of the way, let us generate the code for Greet class:

protoc --python_out=python proto_files/greeting.proto

Post execution of this command, you will notice an auto-generated class

" * proto_files/greeting_pb2.py " under the Python directory. This class would

help us with serialization and deserialization of the Greet object.

Now, let us write the writer of the data, which will take the username and the

greeting as its input:

from .proto_files import greeting_pb2

import sys

15

greet = greeting_pb2.Greet()

greet.username = sys.argv[1]

greet.greeting = sys.argv[2]

filename = "greeting_protobuf_output";

print("Saving to file: " + filename)

f = open(filename, "wb")

f.write(greet.SerializeToString())

f.close()

print("Saved following greeting to disk: \n" + str(greet))

The writer simply takes CLI arguments, creates the Greet object, serializes it, and

then dumps it to a file.

Now let us create a reader which will read the file:

from proto_files import greeting_pb2

greet = greeting_pb2.Greet()

filename = "greeting_protobuf_output";

print("Reading from file: " + filename)

f = open(filename, "rb")

greet.ParseFromString(f.read())

f.close()

print("Read greeting from disk: \n" + str(greet))

The reader simply reads from the same file, deserializes it, and prints the data

about the greeting.

16

Now, let us first execute the writer.

python greetWriter.py Hola Jane

Saving to file: greeting_protobuf_output

Saved following greeting to disk:

greeting: "Hola"

username: "Jane"

And then, let us execute the reader.

python greetReader.py

Reading from file: greeting_protobuf_output

Read greeting from disk:

greeting: "Hola"

username: "Jane"

So, as we see, the data that was serialized by the writer and saved to a file. Next,

the same data is correctly deserialized by the reader and printed accordingly.

17

Let us now look at a few basic data structures and data types which Google

Protobuf provides. We will look at these data structures using an example of a

Movie theater.

Note that for this structure while we will be using Java code, using them in Python

code should also be equally simple and possible.

In the next few chapters, we will discuss the following Protobuf data types one by
one:

 Protobuf Class/Member

 Protobuf Strings

 Protobuf Numbers

 Protobuf Boolean

 Protobuf Enum

 Protobuf List/Repeated

 Protobuf Map

 Protobuf Nested Class

3. Protobuf – Constructs

18

The very basic building block of Protobuf is the member attribute. This translates

to a class in the languages that we use, for example, Java, Python, etc.

Following is the syntax that we need to have to instruct Protobuf that we will be

creating instances of a given class:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

}

We will save the above in "theater.proto" and we will use this when we explore

other data structures.

The "syntax" here represents what version of Protobuf are we using. So, we are

using the latest version 3 and the schema thus can use all the syntax which is valid

for version 3.

syntax = "proto3";

The package here is used for conflict resolution, if, say, we have multiple

class/message with the same name.

package tutorial;

This argument is specific to Java, i.e., the package where the code from the

".proto" file will be auto-generated.

option java_package = "com.tutorialspoint.greeting";

4. Protobuf – Class/Member

19

Now that we are done with the prerequisites, the last item here is:

message Theater

This is nothing but the class name of the base class for the object which would be

created/recreated. Note that it is useless in its current shape, as it does not have

any other attributes. But we will be more adding attributes as we move along.

A single proto file can also have multiple classes/messages. For example, if we

want, we can add a Visitors message/class as well in the same file. Protobuf

would ensure to create two separate and independent classes for the same. For

example:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

}

message Visitor {

}

To use Protobuf, we will now have to use protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

Well, that is it! The above command should create the required files and now we

can use it in our Java code:

Theater theater = Theater.newBuilder().build()

Visitor visitor = Visitor.newBuilder().build()

At this stage, it is not very useful, as we have not added any attributes to the

members/classed. Let us do that when we look at strings.

20

Protobuf strings translate to a string in the languages that we use, for example,

Java, Python, etc. Continuing on the theater example, following is the syntax that

we need to have to instruct Protobuf that we will be creating a string:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

 string address = 2;

}

Now our class/message contains two string attributes. Each of them also has a

position which is what Protobuf uses while serialization and deserialization. Each

attribute of a member needs to have a unique position attribute.

To use Protobuf, we will now have to use protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First let's create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

import java.io.IOException;

5. Protobuf – Strings

21

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .setAddress("212, Maple Street, LA, California")

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +

filename);

 try(FileOutputStream output = new

FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with

following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.greeting.Greeting.Greet;

22

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new FileInputStream(filename)) {

 Theater theater = theaterBuilder.mergeFrom(input).build();

 System.out.println(theater);

 }

 }

}

Now, post compilation, let us execute the writer first:

java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "Silver Screener"

address: "212, Maple Street, LA, California"

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterReader

23

Reading from file theater_protobuf_output

name: "Silver Screener"

address: "212, Maple Street, LA, California"

So, as we see, we are able to read the serialized strings by deserializing the binary

data to the Theater object. Let us now look at numbers in the next chapter.

24

Numbers include protobuf types like int32, int64, float, double, which are basic

building blocks of Protobuf. It translates to int, long float, double, respectively, in

the languages that we use, for example, Java, Python, etc.

Continuing with our theater example, following is the syntax that we need to have

to instruct Protobuf that we will be creating numbers:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 int32 total_capcity = 3;

 int64 mobile = 4;

 float base_ticket_price = 5;

}

Now our class/message contains numerical attributes. Each of them also has a

position which is what Protobuf uses while serialization and deserialization. Each

attribute of a member needs to have a unique number assigned.

To use Protobuf, we will now have to use protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command will create the required files and now we can use it in our

Java code. First, let's create a writer to write the theater information:

package com.tutorialspoint.theater;

6. Protobuf – Numbers

25

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setTotalCapcity(320)

 .setMobile(98234567189L)

 .setBaseTicketPrice(22.45f)

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: "

+ filename);

 try(FileOutputStream output = new

FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with

following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

26

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new

FileInputStream(filename)) {

 Theater theater =

theaterBuilder.mergeFrom(input).build();

 System.out.println(theater.getBaseTicketPrice());

 System.out.println(theater);

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

27

total_capcity: 320

mobile: 98234567189

base_ticket_price: 22.45

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

22.45

total_capcity: 320

mobile: 98234567189

base_ticket_price: 22.45

So, as we see, we are able to read the serialized int, float, and long by

deserializing the binary data to Theater object. In the next chapter, we will look at

the Boolean type.

28

The "bool" data type is one of the basic building blocks of Protobuf. It translates to

Boolean in the languages that we use, for example, Java, Python, etc.

Continuing with the theater example, following is the syntax that we need to have

to instruct Protobuf that we will be creating a Boolean attribute:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 bool drive_in = 6;

}

Now our message class contains a Boolean attribute. It also has a position which

is what Protobuf uses while serialization and deserialization. Each attribute of a

member needs to have a unique number assigned.

To use Protobuf, we will now have to use protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command will create the required files and now we can use it in our

Java code. First let's create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

7. Protobuf – Boolean

29

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setTotalCapcity(320)

 .setMobile(98234567189L)

 .setBaseTicketPrice(22.45f)

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

30

import

com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new

FileInputStream(filename)) {

 Theater theater =

theaterBuilder.mergeFrom(input).build();

 System.out.println(theater.getBaseTicketPrice());

 System.out.println(theater);

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

drive_in: true

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterReader

31

Reading from file theater_protobuf_output

drive_in: true

So, as we see, we are able to read the serialized Boolean by deserializing the

binary data to Theater object.

32

enum is one of the composite datatypes of Protobuf. It translates to an enum in

the languages that we use, for example, Java.

Continuing with our theater example, following is the syntax that we need to have

to instruct Protobuf that we will be creating an enum:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 enum PAYMENT_SYSTEM{

 CASH = 0;

 CREDIT_CARD = 1;

 DEBIT_CARD = 2;

 APP = 3;

}

PAYMENT_SYSTEM payment = 7;

}

Now our message class contains an Enum for payment. Each of them also has a

position which is what Protobuf uses while serialization and deserialization. Each

attribute of a member needs to have a unique number assigned.

We define the enum and use it below as the data type along with "payment"

attribute. Note that although we have defined enum inside the message class, it

can also reside outside of it.

8. Protobuf – Enum

33

To use Protobuf, we will now have to use protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.PAYMENT_SYSTEM;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setPayment(PAYMENT_SYSTEM.CREDIT_CARD)

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

34

Next, we have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import

com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new

FileInputStream(filename)) {

 Theater theater =

theaterBuilder.mergeFrom(input).build();

 System.out.println(theater.getBaseTicketPrice());

 System.out.println(theater);

 }

 }

}

35

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

payment: CREDIT_CARD

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

payment: CREDIT_CARD

So, as we see, we are able to read the serialized enum by deserializing the binary

data to Theater object. In the next chapter, we will take a look at Protobuf lists.

36

Lists are one of the composite datatypes of Protobuf. Protobuf translates this to a

java.util.list interface in Java.

Continuing with our theater example, following is the syntax that we need to have

to instruct Protobuf that we will be creating a list:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 repeated string snacks = 8;

}

Now our message class contains a list for snacks. Note that although we have a

string list, we can as well have number, Boolean, custom data type list.

To use Protobuf, we will now have to use protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, we will have a writer to write the theater information:

package com.tutorialspoint.theater;

import java.util.List;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

9. Protobuf – List/Repeated

37

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 List<String> snacks = new ArrayList<>();

 snacks.add("Popcorn");

 snacks.add("Coke");

 snacks.add("Chips");

 snacks.add("Soda");

 Theater theater = Theater.newBuilder()

 .addAllSnacks(snacks)

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

38

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import

com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new

FileInputStream(filename)) {

 Theater theater = theaterBuilder.mergeFrom(input).build();

 System.out.println(theater);

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

39

snacks: "Popcorn"

snacks: "Coke"

snacks: "Chips"

snacks: "Soda"

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

snacks: "Popcorn"

snacks: "Coke"

snacks: "Chips"

snacks: "Soda"

So, as we see, we are able to read the serialized list by deserializing the binary

data to Theater object. In the next chapter, we will look at the map data type of

Protobuf.

40

Map is one of the composite datatypes of Protobuf. Protobuf translates this to a

java.util.Map interface in Java.

Continuing with our theater example, following is the syntax that we need to have

to instruct Protobuf that we will be creating a map:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 map<string, int32> movieTicketPrice = 9;

}

Now our class/message contains a map of movie and their ticket price. Note that

although we have "string -> int" map, we can as well have number, Boolean, and

custom data types. However, note that we cannot have a nested map.

To use Protobuf, we will now have to use the protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command will create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.util.List;

import java.util.Map;

import java.io.FileOutputStream;

import java.io.IOException;

10. Protobuf – Map

41

import java.util.ArrayList;

import java.util.HashMap;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Map<String, Integer> ticketPrice = new HashMap<>();

 ticketPrice.put("Avengers Endgame", 700);

 ticketPrice.put("Captain America", 200);

 ticketPrice.put("Wonder Woman 1984", 400);

 Theater theater = Theater.newBuilder()

 .putAllMovieTicketPrice(ticketPrice)

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

42

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new
FileInputStream(filename)) {

 Theater theater =
theaterBuilder.mergeFrom(input).build();

 System.out.println(theater);

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

43

movieTicketPrice {

 key: "Avengers Endgame"

 value: 700

}

movieTicketPrice {

 key: "Captain America"

 value: 200

}

movieTicketPrice {

 key: "Wonder Woman 1984"

 value: 400

}

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

movieTicketPrice {

 key: "Avengers Endgame"

 value: 700

}

movieTicketPrice {

 key: "Captain America"

 value: 200

}

movieTicketPrice {

 key: "Wonder Woman 1984"

 value: 400

}

So, as we see, we are able to read the serialized map by deserializing the binary

data to Theater object. In the next chapter, we will see how to create a nested

class in Protobuf.

44

Here, we will see how to create a nested class. Protobuf translates this to a nested

Java class.

Continuing with the theater example, following is the syntax that we need to have

to instruct Protobuf that we will be creating a nested class:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 TheaterOwner owner = 10;

}

message TheaterOwner{

 string name = 1;

 string address = 2;

}

Now our class/message contains a nested class, i.e., information about the owner

of the theater.

To use Protobuf, we will now have to use the protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, let's create a writer to write the theater information:

package com.tutorialspoint.theater;

11. Protobuf – Nested Class

45

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.TheaterOwner;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 TheaterOwner owner = TheaterOwner.newBuilder()

 .setName("Anthony Gonsalves")

 .setAddress("513, St Paul Street, West Coast, California")

 .build();

 Theater theater = Theater.newBuilder()

 .setOwner(owner)

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

System.out.println("Saved theater information with following
data to disk: \n" + theater);

 }

}

46

Next, we have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new
FileInputStream(filename)) {

 Theater theater = theaterBuilder.mergeFrom(input).build();

 System.out.println(theater);

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

47

owner {

 name: "Anthony Gonsalves"

 address: "513, St Paul Street, West Coast, California"

}

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

owner {

 name: "Anthony Gonsalves"

 address: "513, St Paul Street, West Coast, California"

}

So, as we see, we are able to read the serialized nested class data by deserializing

the binary data to Theater object.

48

While we looked at various data types and how to use them. What happens if we

do not specify the values while serialization? Google Protobuf 2 supported

"required" and "optional" tag which helped in figuring out if the

serialization/deserialization should fail if the required parsing logic is unavailable.

But these tags are not available in the latest version. The failing part needs to be

handled by respective code.

Let us look at the default values of the data types:

Data Type Default value

Int32 / Int64 0

Float/double 0.0

String Empty string

Boolean False

Enum First Enum item, that is the one with "index=0"

Repeated type Empty list

Map Empty Map

Nested Class null

So, if one does not specify the data for these data types, then they would take the

above default values. Now, let's continue with our theater example to demonstrate

how it works.

In this example, we will let all the fields default. The only field which would be

specified would be the name of the theater.

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

12. Protobuf – Optionality and Defaults

49

 string name = 1;

 string address = 2;

 int32 total_capcity = 3;

 int64 mobile = 4;

 float base_ticket_price = 5;

 bool drive_in = 6;

 enum PAYMENT_SYSTEM{

 CASH = 0;

 CREDIT_CARD = 1;

 DEBIT_CARD = 2;

 APP = 3;

 }

 PAYMENT_SYSTEM payment = 7;

 repeated string snacks = 8;

 map<string, int32> movieTicketPrice = 9;

 TheaterOwner owner = 10;

}

message TheaterOwner{

 string name = 1;

 string address = 2;

}

50

Now our class/message contains multiple attributes. To use Protobuf, we will

have to use protoc binary to create the required classes from this ".proto" file. Let

us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, let's create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setName("SilverScreen")

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

51

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.Map;

import com.google.protobuf.DescriptorProtos.FileDescriptorProto;

import com.google.protobuf.Descriptors.FieldDescriptor;

import com.google.protobuf.Descriptors.FileDescriptor;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReaderExplicit{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new
FileInputStream(filename)) {

 Theater theater =
theaterBuilder.mergeFrom(input).build();

 System.out.println(

 "Name:" + theater.getName() + "\n" +

 "Address:" + theater.getAddress() + "\n" +

 "Drive_In:" + theater.getDriveIn() + "\n" +

52

 "Total Capacity:" +
theater.getTotalCapcity() + "\n" +

 "Base Ticket Prices: " +
theater.getBaseTicketPrice() + "\n" +

 "Owner: " + theater.getOwner() + "\n" +

 "Snacks: " + theater.getSnacksList() + "\n" +

 "Payment: " + theater.getPayment()

);

 //Map<FieldDescriptor, Object> f = theater.getAllFields();

 System.out.println("List of fields explicitly specified: "

 + theater.getAllFields());

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "SilverScreen"

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

Name:SilverScreen

Address:

Drive_In:false

Total Capacity:0

53

Base Ticket Prices: 0.0

Owner:

Snacks: []

Payment: CASH

List of fields explicitly specified:
{theater.Theater.name=SilverScreen}

So, as we see, all the values defaulted accordingly apart from name which we

have explicitly specified as seen in the bottommost line.

54

Till now, we have been using Java to serialize and deserialize the Movie Theater

data. However, one of the key features that Google Protobuf provides is "language

independence". In this chapter, we will see how to serialize using Java and

deserialize using Python.

Sample Proto file

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

 string address = 2;

 int32 total_capcity = 3;

 int64 mobile = 4;

 float base_ticket_price = 5;

 bool drive_in = 6;

 enum PAYMENT_SYSTEM{

 CASH = 0;

 CREDIT_CARD = 1;

 DEBIT_CARD = 2;

 APP = 3;

 }

13. Protobuf – Language Independence

55

 PAYMENT_SYSTEM payment = 7;

 repeated string snacks = 8;

 map<string, int32> movieTicketPrice = 9;

 TheaterOwner owner = 10;

}

message TheaterOwner{

 string name = 1;

 string address = 2;

}

Serialization using Java

To use Protobuf with Java, we will now have to use protoc binary to create the

required classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

56

import
com.tutorialspoint.theater.TheaterOuterClass.TheaterOwner;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.PAYMENT_SYS
TEM;

public class TheaterWriterComplete{

 public static void main(String[] args) throws IOException {

 TheaterOwner owner = TheaterOwner.newBuilder()

 .setName("Anthony Gonsalves")

 .setAddress("513, St Paul Street, West Coast,
California")

 .build();

 List<String> snacks = new ArrayList<>();

 snacks.add("Popcorn");

 snacks.add("Coke");

 snacks.add("Chips");

 snacks.add("Soda");

 Map<String, Integer> ticketPrice = new HashMap<>();

 ticketPrice.put("Avengers Endgame", 700);

 ticketPrice.put("Captain America", 200);

 ticketPrice.put("Wonder Woman 1984", 400);

 Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .setAddress("212, Maple Street, LA, California")

 .setDriveIn(true)

 .setTotalCapcity(320)

 .setMobile(98234567189L)

57

 .setBaseTicketPrice(22.45f)

 .setPayment(PAYMENT_SYSTEM.CREDIT_CARD)

 .putAllMovieTicketPrice(ticketPrice)

 .addAllSnacks(snacks)

 .setOwner(owner)

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "Silver Screener"

address: "212, Maple Street, LA, California"

total_capcity: 320

mobile: 98234567189

base_ticket_price: 22.45

drive_in: true

payment: CREDIT_CARD

58

snacks: "Popcorn"

snacks: "Coke"

snacks: "Chips"

snacks: "Soda"

movieTicketPrice {

 key: "Avengers Endgame"

 value: 700

}

movieTicketPrice {

 key: "Captain America"

 value: 200

}

movieTicketPrice {

 key: "Wonder Woman 1984"

 value: 400

}

owner {

 name: "Anthony Gonsalves"

 address: "513, St Paul Street, West Coast, California"

}

Deserialization using Python

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.Map;

import com.google.protobuf.DescriptorProtos.FileDescriptorProto;

import com.google.protobuf.Descriptors.FieldDescriptor;

59

import com.google.protobuf.Descriptors.FileDescriptor;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReaderExplicit{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new
FileInputStream(filename)) {

 Theater theater =
theaterBuilder.mergeFrom(input).build();

 System.out.println(

 "Name:" + theater.getName() + "\n" +

 "Address:" + theater.getAddress() + "\n" +

 "Drive_In:" + theater.getDriveIn() + "\n" +

 "Total Capacity:" +
theater.getTotalCapcity() + "\n" +

 "Base Ticket Prices: " +
theater.getBaseTicketPrice() + "\n" +

 "Owner: " + theater.getOwner() + "\n" +

 "Snacks: " + theater.getSnacksList() + "\n" +

 "Payment: " + theater.getPayment()

);

 //Map<FieldDescriptor, Object> f = theater.getAllFields();

 System.out.println("List of fields explicitly specified: "

60

 + theater.getAllFields());

 }

 }

}

Output:

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "SilverScreen"

To use Protobuf with Python, we will now have to use protoc binary to create the

required classes from this ".proto" file. Let us see how to do that:

protoc --python_out=python proto_files\theater.proto

The above command should create the required files and now we can use it in our

Python code. Now, let us write a Python reader:

from proto_files import theater_pb2

from pathlib import Path

path = Path()

filename =
str(path.parent.absolute().parent.joinpath("java").joinpath("the
ater_protobuf_output"));

print("Reading from file: " + filename)

theater = theater_pb2.Theater()

f = open(filename, "rb")

theater.ParseFromString(f.read())

f.close()

print("Read greeting from disk: \n" + str(theater))

61

We read the theater_protobuf_output file which is generated in the Java

directory. Now, let us execute the code:

python theaterReader.py

Reading from file: google-protobuf\java\theater_protobuf_output

Read greeting from disk:

name: "Silver Screener"

address: "212, Maple Street, LA, California"

total_capcity: 320

mobile: 98234567189

base_ticket_price: 22.45

drive_in: true

payment: CREDIT_CARD

snacks: "Popcorn"

snacks: "Coke"

snacks: "Chips"

snacks: "Soda"

movieTicketPrice {

 key: "Avengers Endgame"

 value: 700

}

movieTicketPrice {

 key: "Captain America"

 value: 200

}

movieTicketPrice {

 key: "Wonder Woman 1984"

 value: 400

}

owner {

 name: "Anthony Gonsalves"

 address: "513, St Paul Street, West Coast, California"

62

}

So, as we see, all the values which were written by the Java client were correctly

deserialized and read by our Python client which effectively means Protobuf is

language independent.

63

There are two more compound data types which may be useful for complicated

use cases. They are "OneOf" and "Any". In this chapter, we will see how to use

these two data types of Protobuf.

OneOf

We pass a few parameters to this OneOf data type and Protobuf ensures that only

one of them is set. If we set one of them and try to set the other one, the first

attribute gets reset. Let's us understand this via an example.

Continuing with our theater example, say, we have an API which is used to fetch

the count of available employees. The value returned from this API is then set to

'count' tag in the following file. But if that API errors out, we can't really 'count',

instead we attach the error log.

Ideally, we will always have one of them set, i.e., either the call is successful and

we get the count OR the count calculation fails and we get the error message.

Following is the syntax that we need to have to instruct Protobuf that we will be

creating an OneOf attribute:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

 string address = 2;

 repeated google.protobuf.Any peopleInside = 3;

 oneof availableEmployees{

14. Protobuf – Compound Data Types

64

 int32 count = 4;

 string errorLog = 5;

 }

}

Now our class/message contains an OneOf attribute, i.e., information about the

available employees.

To use Protobuf, we will have to use protoc binary to create the required classes

from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java

proto_files\theater_advanced.proto

The above command should create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.util.List;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import com.google.protobuf.Any;

import com.tutorialspoint.theater.TheaterAdvanced.Employee;

import com.tutorialspoint.theater.TheaterAdvanced.Viewer;

import com.tutorialspoint.theater.TheaterAdvanced.Theater;

public class TheaterWriterComplex{

 public static void main(String[] args) throws IOException {

 List<Any> people = new ArrayList<>();

people.add(Any.pack(Employee.newBuilder().setName("John").build(
)));

65

people.add(Any.pack(Viewer.newBuilder().setName("Jane").setAge(3
0).build()));

people.add(Any.pack(Employee.newBuilder().setName("Simon").build
()));

people.add(Any.pack(Viewer.newBuilder().setName("Janice").setAge
(25).build()));

 Theater theater = Theater.newBuilder()

 .setName("SilverScreen")

 .addAllPeopleInside(people)

 .build();

 String filename = "theater_protobuf_output_silver";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.IOException;

import com.google.protobuf.Any;

import com.tutorialspoint.theater.TheaterAdvanced.Theater;

66

import
com.tutorialspoint.theater.TheaterAdvanced.Theater.AvailableEmpl
oyeesCase;

import
com.tutorialspoint.theater.TheaterAdvanced.Theater.Builder;

import com.tutorialspoint.theater.TheaterAdvanced.Viewer;

import com.tutorialspoint.theater.TheaterAdvanced.Employee;

public class TheaterReaderComplex{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output_silver";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new FileInputStream(filename)) {

 Theater theater = theaterBuilder.mergeFrom(input).build();

 System.out.println("Name:" + theater.getName() + "\n");

 for (Any anyPeople : theater.getPeopleInsideList()) {

 if(anyPeople.is(Employee.class)) {

 Employee employee = anyPeople.unpack(Employee.class);

 System.out.println("Employee:" + employee + "\n");

 }

 if(anyPeople.is(Viewer.class)) {

 Viewer viewer =
anyPeople.unpack(Viewer.class);

 System.out.println("Viewer:" + viewer + "\n");

 }

 }

 }

 }

67

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file:
theater_protobuf_output_silver

Saved theater information with following data to disk:

name: "SilverScreen"

peopleInside {

 type_url: "type.googleapis.com/theater.Employee"

 value: "\n\004John"

}

peopleInside {

 type_url: "type.googleapis.com/theater.Viewer"

 value: "\n\004Jane\020\036"

}

peopleInside {

 type_url: "type.googleapis.com/theater.Employee"

 value: "\n\005Simon"

}

peopleInside {

 type_url: "type.googleapis.com/theater.Viewer"

 value: "\n\006Janice\020\031"

}

Now, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output_silver

Name:SilverScreen

68

Employee:name: "John"

Viewer:name: "Jane"

age: 30

Employee:name: "Simon"

Viewer:name: "Janice"

age: 25

So, as we see, in the list, we are able to figure out the Any type and find the

respective underlying datatype employee/viewer. Let us now look at defaults and

AnyOf.

Any

The next data type that can be of use for complicated uses cases is Any. We can

pass any type/message/class to this data type and Protobuf would not complain.

Let us understand this via an example.

Continuing with the theater example, say, we want to track people inside the

theater. Some of them could be employees and others could be viewers. But

ultimately they are people, so we will pass them in a single list which would contain

both the types.

Following is the syntax that we need to have to instruct Protobuf that we will be

creating a list:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

import "google/protobuf/any.proto";

message Theater {

69

 string name = 1;

 string address = 2;

 repeated google.protobuf.Any peopleInside = 3;

}

message Employee{

 string name = 1;

 string address = 2;

}

message Viewer{

 string name = 1;

 int32 age = 2;

 string sex = 3;

}

Now our class/message contains an Any attribute 'peopleInside' list along with

Viewer and Employee class, i.e., information about the people inside theater. Let

us see this in action.

To use Protobuf, we will now have to use protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java

proto_files\theater_advanced.proto

The above command should create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.util.List;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.ArrayList;

70

import com.google.protobuf.Any;

import com.tutorialspoint.theater.TheaterAdvanced.Employee;

import com.tutorialspoint.theater.TheaterAdvanced.Viewer;

import com.tutorialspoint.theater.TheaterAdvanced.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 List<Any> people = new ArrayList<>();

people.add(Any.pack(Employee.newBuilder().setName("John").build(
)));

people.add(Any.pack(Viewer.newBuilder().setName("Jane").setAg
e(30).build()));

people.add(Any.pack(Employee.newBuilder().setName("Simon").build
()));

people.add(Any.pack(Viewer.newBuilder().setName("Janice").setAge
(25).build()));

 Theater theater = Theater.newBuilder()

 .setName("SilverScreen")

 .addAllPeopleInside(people)

 .build();

 String filename = "theater_protobuf_output_silver";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

71

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.IOException;

import com.google.protobuf.Any;

import com.tutorialspoint.theater.TheaterAdvanced.Theater;

import

com.tutorialspoint.theater.TheaterAdvanced.Theater.AvailableEmpl

oyeesCase;

import

com.tutorialspoint.theater.TheaterAdvanced.Theater.Builder;

import com.tutorialspoint.theater.TheaterAdvanced.Viewer;

import com.tutorialspoint.theater.TheaterAdvanced.Employee;

public class TheaterReaderComplex{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output_silver";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new

FileInputStream(filename)) {

72

 Theater theater =

theaterBuilder.mergeFrom(input).build();

 System.out.println("Name:" + theater.getName() + "\n");

 for (Any anyPeople : theater.getPeopleInsideList()) {

 if(anyPeople.is(Employee.class)) {

 Employee employee =

anyPeople.unpack(Employee.class);

 System.out.println("Employee:" + employee + "\n");

 }

 if(anyPeople.is(Viewer.class)) {

 Viewer viewer = anyPeople.unpack(Viewer.class);

 System.out.println("Viewer:" + viewer + "\n");

 }

 }

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file:
theater_protobuf_output_silver

Saved theater information with following data to disk:

name: "SilverScreen"

peopleInside {

 type_url: "type.googleapis.com/theater.Employee"

 value: "\n\004John"

73

}

peopleInside {

 type_url: "type.googleapis.com/theater.Viewer"

 value: "\n\004Jane\020\036"

}

peopleInside {

 type_url: "type.googleapis.com/theater.Employee"

 value: "\n\005Simon"

}

peopleInside {

 type_url: "type.googleapis.com/theater.Viewer"

 value: "\n\006Janice\020\031"

}

Note: There are two points to note:

1. In case of Any, Protobuf packs/serializes the contents inside any tag to

bytes and then stores it as 'value'. Basically, that allows us to send any

message type with this 'Any' tag.

2. We also see "type.googleapis.com/theater.Viewer" and

"type.googleapis.com/theater.Employee". This is used by Protobuf to

save the type of object along with the data as the type of data in the Any

data type can vary.

Now let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output_silver

Name:SilverScreen

Employee:name: "John"

Viewer:name: "Jane"

age: 30

74

Employee:name: "Simon"

Viewer:name: "Janice"

age: 25

So, as we see, our reader code is successfully able to differentiate between

Employee and the Viewer, even though they come in the same array.

75

Protobuf serializes the data and stores it in a binary format. While this may not be

a problem if we are dealing simply with strings, because ultimately Protobuf uses

UTF-8. So, any text that it stores would be human readable if you are using a

UTF-8 enabled reader. However, things like int32, Boolean, list, maps are

encoded using specific techniques to reduce space consumption.

That is why, at times, encoding/decoding a message via simple command line

utility is useful for testing purposes. Let us see this in action:

Suppose we use the following simple "greeting_cli.proto":

syntax = "proto3";

package tutorial;

option java_package = "com.tutorialspoint.greeting";

message Greet {

 string greeting = 1;

 string username = 2;

 int32 age = 3;

}

And we create a message in cli_greeting_message:

greeting: "Yo"

username : "John"

age : 50

Now, let us encode this message using Protobuf CLI tool:

cat .\cli_greeting_msg.proto | protoc --encode=tutorial.Greet

.\greeting_cli.proto > encoded_greeting

15. Protobuf – Command Line Usage

76

If we look at what is inside this file or cat this file:

cat .\encoded_greeting

☻Yo↕♦John↑2

You will notice some weird characters apart from "Yo" and "John". That is because

these encoding may not be a valid unicode/UTF-8 encoding. UTF-8 is what is

used, generally speaking, at most of the places. And this is used for string in case

of Protobuf, but ints, maps, Boolean, list have separate formats. Plus, this file

also contains a metadata of the data.

That is why, we need a decoder/deserializer to read this data. Let us use that.

cat .\encoded_greeting | protoc --decode=tutorial.Greet
.\greeting_cli.proto

greeting: "Yo"

username : "John"

age : 50

So, as we see, we are able to get the data back which was serialized and looked

weird in the file.

77

Assume you came out with the definition of the proto file that you will use in the

production environment. There will obviously be times in future when this definition

would have to change. In that case, it is essential that the changes we make

adhere to certain rules so that the changes are backwards compatible. Let us see

this in action with a few do's and dont's.

Add a new field in the writer, while the reader retains the older version of code.

Suppose, you decide to add a new field. Ideally, to have the new field to be added,

we will have to update the writer and the reader simultaneously. However, in a

large-scale deployment, this is not possible. There will be cases where the writer

has been updated, but the reader is yet to be updated with the new field. This is

where the above situation occurs. Let us see that in action.

Continuing with our theater example, say, we just have a single tag which is

'name' in our proto file. Following is the syntax that we need to have to instruct

Protobuf:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

}

To use Protobuf, we will now have to use the protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

16. Protobuf – Rules to Update Definition

78

package com.tutorialspoint.theater;

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

79

import java.io.IOException;

import com.google.protobuf.ProtocolStringList;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new
FileInputStream(filename)) {

 Theater theater =
theaterBuilder.mergeFrom(input).build();

 System.out.println(theater);

 System.out.println("Unknwon fields: " +
theater.getUnknownFields());

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "Silver Screener"

80

Now let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

name: "Silver Screener"

Unknown Fields

We just wrote a simple string as per our Protobuf definition and the reader was

able to read the string. And we also saw that there were no unknown fields that the

reader was not aware of.

But now, let us suppose we want add a new string 'address' to our Protobuf

definition. Now, it will look like this:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

 string address = 2;

}

We will also update our writer and add an address field:

Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .setAddress("212, Maple Street, LA, California")

 .build();

Before compiling, rename the JAR from the previous compilation to protobuf-

tutorial-old-1.0.jar. And then compile.

Now, post compilation, let us execute the writer first:

81

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "Silver Screener"

address: "212, Maple Street, LA, California"

Now let us execute the reader to read from the same file but from the older JAR:

java -cp .\target\protobuf-tutorial-old-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

Reading from file theater_protobuf_output

name: "Silver Screener"

2: "212, Maple Street, LA, California"

Unknown fields: 2: "212, Maple Street, LA, California"

As you can see from the last line of the output, the old reader is unaware of the

address field which was added by the new writer. It just shows how a combination

of "new writer - old reader" functions.

Deleting a Field

Suppose, you decide to delete an existing field. Ideally, for the deleted field to have

an effect immediately, we will have to update the writer and the reader

simultaneously. However, in a large-scale deployment, this is not possible. There

will be cases where the writer has been updated, but the reader is yet to be

updated. In such a case, the reader will still attempt to read the deleted field. Let

us see that in action.

Continuing with the theater example, say, we just have two tags in our proto file.

Following is the syntax that we need to have to instruct Protobuf:

syntax = "proto3";

82

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

 string address = 2;

}

To use Protobuf we will now have to use the protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

package com.tutorialspoint.theater;

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .setAddress("212, Maple Street, LA, California")

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

83

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.google.protobuf.ProtocolStringList;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new FileInputStream(filename))
{

84

 Theater theater =
theaterBuilder.mergeFrom(input).build();

 System.out.println(theater);

 System.out.println("Unknwon fields: " +
theater.getUnknownFields());

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "Silver Screener"

address: "212, Maple Street, LA, California"

Now let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

name: "Silver Screener"

address: "212, Maple Street, LA, California"

So, nothing new here, we just wrote a simple string as per our Protobuf definition

and the reader was able to read the string.

But now, let us suppose we want to delete the string 'address' from our Protobuf

definition. So, the definition would look like this:

syntax = "proto3";

85

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

}

We will also update our writer as follows:

Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .build();

Before compiling, rename the JAR from the previous compilation to protobuf-

tutorial-old-1.0.jar. And then compile.

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "Silver Screener"

Now let us execute the reader to read from the same file but from the older JAR:

java -cp .\target\protobuf-tutorial-old-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

Reading from file theater_protobuf_output

name: "Silver Screener"

address:

As you can see from the last line of the output, the old reader defaults to the value

of "address". It shows how a combination of "new writer - old reader" functions.

86

Avoid Reusing Serial Number of the Field

There may be cases where, by mistake, we update the "serial number" of a field.

This can be problematic, as the serial number is very critical for Protobuf to

understand and deserialize the data. And some old reader may be relying on this

serial number to deserialize the data. So, it is recommended that you:

 Do not change serial number of field

 Do not reuse serial number of deleted field.

Let us see that in action by interchanging the field tags.

Continuing with the theater example, let's assume we just have two tags in our

proto file. Following is the syntax that we need to have to instruct Protobuf:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

 string address = 2;

}

To use Protobuf, we will now have to use the protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

package com.tutorialspoint.theater;

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

87

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .setAddress("212, Maple Street, LA, California")

 .build();

 String filename = "theater_protobuf_output";

 System.out.println("Saving theater information to file: " +
filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

 }

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.google.protobuf.ProtocolStringList;

import com.tutorialspoint.greeting.Greeting.Greet;

88

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

System.out.println("Reading from file " + filename);

 try(FileInputStream input = new
FileInputStream(filename)) {

 Theater theater =
theaterBuilder.mergeFrom(input).build();

 System.out.println(theater);

 System.out.println("Unknwon fields: " +
theater.getUnknownFields());

 }

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "Silver Screener"

address: "212, Maple Street, LA, California"

Next, let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

89

name: "Silver Screener"

address: "212, Maple Street, LA, California"

Here, we just wrote simple strings as per our Protobuf definition and the reader

was able to read the string. But now, let us interchange the serial number in our

Protobuf definition and to make it like this:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 2;

 string address = 1;

}

Before compiling, rename the JAR from previous compilation to protobuf-tutorial-

old-1.0.jar. And then compile.

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

address: "212, Maple Street, LA, California"

name: "Silver Screener"

Now let us execute the reader to read from the same file but from the older JAR:

java -cp .\target\protobuf-tutorial-old-1.0.jar

com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

name: "212, Maple Street, LA, California"

90

address: "Silver Screener"

As you can see from the output, the old reader interchanged the address and the

name. It shows that updating the serial number along with a combination of "new

writer-old reader" does not function as expected.

More importantly, here we had two strings, which is why we get to see the data. If

we had used different data types, for example, int32, Boolean, map, etc., Protobuf

would have given up and treated that as an unknown field.

So, it is imperative to not change the serial number of a field or reuse the serial

number of a deleted field.

Changing the Field Type

There may be cases where we need to update the type of an attribute/field.

Protobuf has certain compatibility rules for this. Not all the types can be converted

to other types. Few basic ones to be aware of:

 string and bytes are compatible if the bytes are UTF-8. This is because,
strings are anyways encoded/decoded as UTF-8 by Protobuf.

 enum is compatible with int32 and int64 in terms of the value, however,
the client may not deserialize this as expected.

 int32, int64 (unsigned also) along with bool are compatible and thus can
be interchanged. Excessive characters may get truncated similar to how
casting works in languages.

But we need to be very careful when changing types. Let us see that in action with

an incorrect example of converting int64 to int32.

Continuing with the theater example, suppose we just have two tags in our proto

file. Following is the syntax that we need to have to instruct Protobuf:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

91

 string name = 1;

 int64 total_capacity = 2;

}

To use Protobuf, we will now have to use the protoc binary to create the required

classes from this ".proto" file. Let us see how to do that:

protoc --java_out=java/src/main/java proto_files\theater.proto

The above command should create the required files and now we can use it in our

Java code. First, we will create a writer to write the theater information:

package com.tutorialspoint.theater;

import java.io.FileOutputStream;

import java.io.IOException;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

public class TheaterWriter{

 public static void main(String[] args) throws IOException {

 Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .setTotalCapacity(2300000000L)

 .build();

 String filename = "theater_protobuf_output";

System.out.println("Saving theater information to file:
" + filename);

 try(FileOutputStream output = new
FileOutputStream(filename)){

 theater.writeTo(output);

 }

 System.out.println("Saved theater information with
following data to disk: \n" + theater);

92

 }

}

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Saving theater information to file: theater_protobuf_output

Saved theater information with following data to disk:

name: "Silver Screener"

total_capacity: 2300000000

Let us suppose, we use a different version of proto file for the reader:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

 int64 total_capacity = 2;

}

Next, we will have a reader to read the theater information:

package com.tutorialspoint.theater;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import com.google.protobuf.ProtocolStringList;

import com.tutorialspoint.greeting.Greeting.Greet;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

93

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.Builder;

public class TheaterReader{

 public static void main(String[] args) throws IOException {

 Builder theaterBuilder = Theater.newBuilder();

 String filename = "theater_protobuf_output";

 System.out.println("Reading from file " + filename);

 try(FileInputStream input = new
FileInputStream(filename)) {

 Theater theater =
theaterBuilder.mergeFrom(input).build();

 System.out.println(theater);

 System.out.println("Unknwon fields: " +
theater.getUnknownFields());

 }

 }

}

Now let us execute the reader to read from the same file:

java -cp .\target\protobuf-tutorial-old-1.0.jar
com.tutorialspoint.theater.TheaterReader

Reading from file theater_protobuf_output

name: "Silver Screener"

address: "212, Maple Street, LA, California"

So, nothing new here, we just wrote simple strings as per our Protobuf definition

and the reader was able to read the string. But now, let us interchange the serial

number in our Protobuf definition and make it like this:

syntax = "proto3";

94

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 2;

 int32 total_capacity = 2;

}

Before compiling, rename the JAR from previous compilation to protobuf-tutorial-

old-1.0.jar. And then compile.

Now, post compilation, let us execute the writer first:

> java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.theater.TheaterWriter

Reading from file theater_protobuf_output

address: "Silver Screener"

total_capcity: -1994967296

As you can see from the output, the old reader converted the number from int64,

however, the given int32 does not have enough space to contain the data, it

wrapped around to negative number. This wrapping is Java specific and is not

related to Protobuf.

So, we need to upgrade to int64 from int32 instead of other way around. If we still

want to convert from int64 to int32, we need to ensure that the values can be

actually held in 31 bits (1 bit for sign bit).

95

We have covered quite a lot of examples of Protobuf and its data types. In this

chapter, let us take another example and see how Protobuf integrates with a

Schema Registry used by Kafka. Let us first understand what a "schema registry"

is.

Schema Registry

Kafka is one of the widely used messaging queues. It is used to apply the

publisher-subscriber model at scale. More information about Kafka can be found

here: https://www.tutorialspoint.com/apache_kafka/index.htm

However, at the basic level, a Kafka producer is supposed to send a message,

i.e., a piece of information which the Kafka consumer can read. And this sending

and consuming of message is where we need a schema. It is especially required

in large-scale organization where there are multiple teams reading/writing to Kafka

topic. Kafka provides a way to store this schema in a schema registry which are

then created/consumed when the producer/consumer creates/consumes the

message.

There are two major benefits of maintaining a schema:

 Compatibility: In larger organizations, it is necessary that the team
producing the message does not break the downstream tools which
consume these messages. Schema registry ensures that changes are
backwards compatible.

 Efficient encoding: Sending in a field name, its type with every message
is space and compute inefficient. With schemas in place, we do not need
to send this information with each message.

The schema registry supports Avro, Google Protobuf and JSON Schema as the

schema language. The schema in these languages can be stored in the schema

registry. For this tutorial, we would require Kafka setup and Schema registry setup.

For installation of Kafka, you can check the following links:

 https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_
steps.htm

17. Protobuf – Integration with Kafka

96

 https://docs.confluent.io/platform/current/installation/installing_cp/deb-
ubuntu.html#systemd-ubuntu-debian-install

Once you have Kafka installed, you can then setup the Schema Registry by

updating the /etc/schema-registry/schema-registry.properties file.

where should schema registry listen on

listeners=http://0.0.0.0:8081

Schema registry uses Kafka beneath it, so we need to tell
where are the Kafka brokers available

kafkastore.bootstrap.servers=PLAINTEXT://hostname:9092,SSL://hos
tname2:9092

Once done, you can then run:

sudo systemctl start confluent-schema-registry

With the setup out of the way, let us start using Google Protobuf along with the

Schema Registry.

Kafka Producer with Protobuf Schema

Let us continue with our theater example. We will use the following Protobuf

schema:

syntax = "proto3";

package theater;

option java_package = "com.tutorialspoint.theater";

message Theater {

 string name = 1;

 string address = 2;

 int32 total_capcity = 3;

 int64 mobile = 4;

 float base_ticket_price = 5;

97

 bool drive_in = 6;

 enum PAYMENT_SYSTEM{

 CASH = 0;

 CREDIT_CARD = 1;

 DEBIT_CARD = 2;

 APP = 3;

 }

 PAYMENT_SYSTEM payment = 7;

 repeated string snacks = 8;

 map<string, int32> movieTicketPrice = 9;

}

Now, let us create a simple Kafka writer which would write the message encoded

in this format to the Kafka topic. But for doing that, first, we need to add a few

dependencies to our Maven POM:

 Kafka Client to use Kafka producer and consumer

 Kafka Protobuf serializer to serialize and deserialize the message

 Slf4j simple to ensure we get logs from Kafka

 <dependency>

 <groupId>org.apache.kafka</groupId>

 <artifactId>kafka-clients</artifactId>

 <version>2.5.0</version>

 </dependency>

 <!-- https://mvnrepository.com/artifact/io.confluent/kafka-
protobuf-serializer -->

 <dependency>

98

 <groupId>io.confluent</groupId>

 <artifactId>kafka-protobuf-serializer</artifactId>

 <version>5.5.1</version>

 </dependency>

 <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-
simple -->

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId>

 <version>1.7.30</version>

 </dependency>

Once this is done, let us now create a Kafka producer. This producer will create

and send a message which will contain the theater object.

package com.tutorialspoint.kafka;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.ProducerRecord;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.PAYMENT_SYS
TEM;

public class KafkaProtbufProducer {

 public static void main(String[] args) throws Exception{

99

 String topicName = "testy1";

 Properties props = new Properties();

 props.put("bootstrap.servers", "localhost:9092");

 props.put("clientid", "foo");

 props.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

 props.put("value.serializer",

"io.confluent.kafka.serializers.protobuf.KafkaProtobufSerializer
");

 props.put("schema.registry.url", "http://localhost:8081");

 props.put("auto.register.schemas", "true");

 Producer<String, Theater> producer = new
KafkaProducer<>(props);

 producer.send(new ProducerRecord<String, Theater>

 (topicName, "SilverScreen", getTheater())).get();

 System.out.println("Sent to Kafka: \n" + getTheater());

 producer.flush();

 producer.close();

 }

 public static Theater getTheater() {

 List<String> snacks = new ArrayList<>();

 snacks.add("Popcorn");

 snacks.add("Coke");

100

 snacks.add("Chips");

 snacks.add("Soda");

 Map<String, Integer> ticketPrice = new HashMap<>();

 ticketPrice.put("Avengers Endgame", 700);

 ticketPrice.put("Captain America", 200);

 ticketPrice.put("Wonder Woman 1984", 400);

 Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

 .setAddress("212, Maple Street, LA, California")

 .setDriveIn(true)

 .setTotalCapacity(320)

 .setMobile(98234567189L)

 .setBaseTicketPrice(22.45f)

 .setPayment(PAYMENT_SYSTEM.CREDIT_CARD)

 .putAllMovieTicketPrice(ticketPrice)

 .addAllSnacks(snacks)

 .build();

 return theater;

 }

}

Here is a list of a few points that we need to be aware of:

 We need to pass the Schema Registry URL to the Producer.

 We also need to pass the correct Protobuf Serializer which is specific to
the Schema Registry.

 Schema registry would automatically store the schema of the theater
object when we are done sending.

 Lastly, we created a theater object from our auto-generated Java code
and that is what we will be sending.

101

Let us now compile and execute the code:

mvn clean install ; java -cp .\target\protobuf-tutorial-1.0.jar

com.tutorialspoint.kafka.KafkaProtbufProducer

We will get to see the following output:

[main] INFO org.apache.kafka.common.utils.AppInfoParser - Kafka

version: 2.5.0

[main] INFO org.apache.kafka.common.utils.AppInfoParser - Kafka

commitId: 66563e712b0b9f84

[main] INFO org.apache.kafka.common.utils.AppInfoParser - Kafka

startTimeMs: 1621692205607

[kafka-producer-network-thread | producer-1] INFO

org.apache.kafka.clients.Metadata - [Producer clientId=producer-

1] Cluster ID: 7kwQVXjYSz--bE47MiXmjw

Sent to Kafka:

name: "Silver Screener"

address: "212, Maple Street, LA, California"

total_capacity: 320

mobile: 98234567189

base_ticket_price: 22.45

drive_in: true

payment: CREDIT_CARD

snacks: "Popcorn"

snacks: "Coke"

snacks: "Chips"

snacks: "Soda"

movieTicketPrice {

 key: "Avengers Endgame"

 value: 700

}

movieTicketPrice {

 key: "Captain America"

102

 value: 200

}

movieTicketPrice {

 key: "Wonder Woman 1984"

 value: 400

}

[main] INFO org.apache.kafka.clients.producer.KafkaProducer -
[Producer clientId=producer-1] Closing the Kafka producer with
timeoutMillis = 9223372036854775807 ms.

It means that our message has been sent.

Now, let us confirm that the schema has been stored in the Schema Registry.

curl -X GET http://localhost:8081/subjects | jq

And the output which is displayed is "topicName" + "key/value"

[

 "testy1-value"

]

We can also see the schema which is stored by the registry:

curl -X GET http://localhost:8081/schemas/ids/1 | jq

{

 "schemaType": "PROTOBUF",

 "schema": "syntax = \"proto3\";\npackage theater;\n\noption
java_package = \"com.tutorialspoint.theater\";\n\nmessage
Theater {\n string name = 1;\n string address = 2;\n int64
total_capacity = 3;\n int64 mobile = 4;\n float
base_ticket_price = 5;\n bool drive_in = 6;\n
.theater.Theater.PAYMENT_SYSTEM payment = 7;\n repeated string
snacks = 8;\n repeated .theater.Theater.MovieTicketPriceEntry
movieTicketPrice = 9;\n\n message MovieTicketPriceEntry {\n
option map_entry = true;\n \n string key = 1;\n int32
value = 2;\n }\n enum PAYMENT_SYSTEM {\n CASH = 0;\n
CREDIT_CARD = 1;\n DEBIT_CARD = 2;\n APP = 3;\n }\n}\n"

}

103

Kafka Consumer with Protobuf Schema

Let us now create a Kafka consumer. This consumer will consume the message

which contains the theater object.

package com.tutorialspoint.kafka;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.ProducerRecord;

import com.tutorialspoint.theater.TheaterOuterClass.Theater;

import
com.tutorialspoint.theater.TheaterOuterClass.Theater.PAYMENT_SYS
TEM;

public class KafkaProtbufProducer {

 public static void main(String[] args) throws Exception{

 String topicName = "testy1";

 Properties props = new Properties();

 props.put("bootstrap.servers", "localhost:9092");

 props.put("clientid", "foo");

 props.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

 props.put("value.serializer",

104

"io.confluent.kafka.serializers.protobuf.KafkaProtobufSerializer
");

 props.put("schema.registry.url", "http://localhost:8081");

 props.put("auto.register.schemas", "true");

 Producer<String, Theater> producer = new
KafkaProducer<>(props);

 producer.send(new ProducerRecord<String, Theater>

 (topicName, "SilverScreen", getTheater())).get();

 System.out.println("Sent to Kafka: \n" + getTheater());

 producer.flush();

 producer.close();

 }

 public static Theater getTheater() {

 List<String> snacks = new ArrayList<>();

 snacks.add("Popcorn");

 snacks.add("Coke");

 snacks.add("Chips");

 snacks.add("Soda");

 Map<String, Integer> ticketPrice = new HashMap<>();

 ticketPrice.put("Avengers Endgame", 700);

 ticketPrice.put("Captain America", 200);

 ticketPrice.put("Wonder Woman 1984", 400);

 Theater theater = Theater.newBuilder()

 .setName("Silver Screener")

105

 .setAddress("212, Maple Street, LA, California")

 .setDriveIn(true)

 .setTotalCapacity(320)

 .setMobile(98234567189L)

 .setBaseTicketPrice(22.45f)

 .setPayment(PAYMENT_SYSTEM.CREDIT_CARD)

 .putAllMovieTicketPrice(ticketPrice)

 .addAllSnacks(snacks)

 .build();

 return theater;

 }

}

Here is a list of points that we need to be aware of:

 We need to pass the Schema Registry URL to the Consumer.

 We also need to pass the correct Protobuf Deserializer which is specific to
the Schema Registry.

 The Schema Registry would automatically read the stored schema of the
theater object when we are done consuming.

 Lastly, we created a theater object from our auto-generated Java code
and that is what we will be sending.

Let us now compile and execute the code:

mvn clean install ; java -cp .\target\protobuf-tutorial-1.0.jar
com.tutorialspoint.kafka.KafkaProtbufConsumer

offset = 0, key = SilverScreen, value = May 22, 2021 7:50:15 PM
com.google.protobuf.TextFormat$Printer$MapEntryAdapter compareTo

May 22, 2021 7:50:15 PM
com.google.protobuf.TextFormat$Printer$MapEntryAdapter compareTo

name: "Silver Screener"

106

address: "212, Maple Street, LA, California"

total_capacity: 320

mobile: 98234567189

base_ticket_price: 22.45

drive_in: true

payment: CREDIT_CARD

snacks: "Popcorn"

snacks: "Coke"

snacks: "Chips"

snacks: "Soda"

movieTicketPrice {

 key: "Captain America"

 value: 200

}

movieTicketPrice {

 key: "Wonder Woman 1984"

 value: 400

}

movieTicketPrice {

 key: "Avengers Endgame"

 value: 700

}

So, as we can see, the message which was written into Kafka was correctly

consumed by the Consumer. Plus, the Registry stored the schema which can also

be accessed by a REST API.

107

We have been using Protobuf in Java and Python. But there are multiple

languages it supports including C++, C#, Kotlin, Dart, Go, etc. The basic stuff

mostly remains the same, i.e., writing a proto schema, generating the source code

via protoc binary which our code can use. Let us write a basic example for Go

and Dart as part of this section.

We will use the following proto file:

syntax = "proto3";

package tutorial;

message Greet {

 string greeting = 1;

 string username = 2;

}

Using Google Protobuf in Go Lang

To use the above Protobuf file, we will first have to generate the code for the Greet

class in Go language. For that, we need to do the following:

Install the Go Protobuf plugin (protoc-gen-go) which is a prerequisite for the

protoc file which we have been using:

go install google.golang.org/protobuf/cmd/protoc-gen-go

Then, run the protoc with the provided ".proto" file and we will instruct it to

generate the code under the "go" directory.

protoc --go_out=go proto_files/greeting.proto

Post execution of the above command, you will notice an auto-generated class:

"greeting.pb.go". This class would help us with the serialization and

deserialization of the Greet object.

18. Protobuf – In Other Languages

108

Now, let us create the writer of the data, which will take the username and

greeting as its input:

import "fmt"

import "io/ioutil"

func main() {

 greet := Greeting{}

 greet.username = "John"

 greet.greeting = "Hello"

 out, err := proto.Marshal(greet)

 ioutil.WriteFile("greeting_go_out", out , 0644)

 fmt.Println("Saved greeting with following data to disk:")

 fmt.Println(p)

}

Now let us create the reader which will read the file:

import "fmt"

import "io/ioutil"

func main() {

 in, err := ioutil.ReadFile("greeting_go_out")

 greet := &pb.Greet{}

 proto.Unmarshal(in, greet)

 fmt.Println("Reading from file greeting_protobuf_output:")

 fmt.Println(greet)

}

109

The reader simply reads from the same file, deserializes it, and prints the data

about the greeting.

Now that we have setup the reader and the writer, let us compile the project.

Next, let us first execute the writer:

go run greeting_writer.go

Saved greeting with following data to disk:

{greeting: Hello, username: John}

Then, let us execute the reader:

go run greeting_reader.go

Reading from file greeting_protobuf_output

{greeting: Hello, username: John}

So, as we can see, the data that was serialized by the writer and saved to the file,

that exact data is correctly deserialized by the reader and printed accordingly.

Using Google Protobuf in Dart

To use the above Protobuf file, we will first have to install and generate the code

for the Greet class in Dart language. For that, we need to do the following:

Install the Dart Protobuf plugin (protoc-gen-go) which is the prerequisite for the

protoc file which we have been using.

https://github.com/dart-

lang/protobuf/tree/master/protoc_plugin#how-to-build-and-use

Then, run the protoc with the provided ".proto" file and we will instruct it to

generate the code under the "dart" directory.

protoc --go_out=dart proto_files/greeting.proto

Post execution of the above command, you will notice an auto-generated class:

"greeting.pb.dart". This class would help us with the serialization and

deserialization of the Greet object.

110

Now, let us create the writer of the data, which will take the username and

greeting as its input:

import 'dart:io';

import 'dart/greeting.pb.dart';

main(List arguments) {

 Greeting greet = Greeting();

 greet.greeting = "Hello";

 greet.username = "John";

 File file = File("greeting_go_out");

 print("Saved greeting with following data to disk:")

 file.writeAsBytes(greet.writeToBuffer());

 print(greet)

}

Next, let us create a reader which will read the file:

import 'dart:io';

import 'dart/greeting.pb.dart';

main(List arguments) {

 File file = File("greeting_go_out");

 print("Reading from file greeting_protobuf_output:")

 Greeting greet = Greeting.fromBuffer(file.readAsBytesSync());

 print(greet)

}

111

The reader simply reads from the same file, deserializes it, and prints the data

about the greeting.

Now that we have setup the reader and the writer, let us compile the project.

Next, let us first execute the writer:

dart run greeting_writer.dart

Saved greeting with following data to disk:

greeting: Hello

username: John

And then, let us execute the reader.

dart run greeting_reader.dart

Reading from file greeting_protobuf_output

greeting: Hello

username: John

So, as we can see, the data that was serialized by the writer and saved to the file,

that exact data is correctly deserialized by the reader and printed accordingly.

