Sorted GCD Pair Queries - Problem
Given an integer array nums of length n and an array of queries, you need to answer queries about GCD pairs.
Here's how it works:
- Calculate the Greatest Common Divisor (GCD) of all possible pairs
(nums[i], nums[j])where0 β€ i < j < n - Sort all these GCD values in ascending order to form the
gcdPairsarray - For each query
queries[i], return the element at indexqueries[i]in the sortedgcdPairsarray
Example: If nums = [2, 3, 4], the pairs are (2,3), (2,4), (3,4) with GCDs [1, 2, 1]. After sorting: [1, 1, 2].
Return an array answer where answer[i] corresponds to gcdPairs[queries[i]].
Input & Output
example_1.py β Basic Example
$
Input:
nums = [2, 3, 4], queries = [0, 2, 2]
βΊ
Output:
[1, 2, 2]
π‘ Note:
Pairs are (2,3), (2,4), (3,4) with GCDs [1, 2, 1]. After sorting: [1, 1, 2]. Query 0β1, Query 2β2, Query 2β2.
example_2.py β Larger Array
$
Input:
nums = [4, 4, 2, 1], queries = [5, 3, 1, 0]
βΊ
Output:
[4, 2, 1, 1]
π‘ Note:
6 pairs: (4,4)β4, (4,2)β2, (4,1)β1, (4,2)β2, (4,1)β1, (2,1)β1. Sorted: [1,1,1,2,2,4]. Queries return [4,2,1,1].
example_3.py β Edge Case
$
Input:
nums = [1, 1], queries = [0]
βΊ
Output:
[1]
π‘ Note:
Only one pair (1,1) with GCD=1. Query 0 returns the first (and only) element: 1.
Constraints
- 2 β€ nums.length β€ 105
- 1 β€ nums[i] β€ 2 Γ 104
- 1 β€ queries.length β€ 105
- 0 β€ queries[i] < nums.length Γ (nums.length - 1) / 2
- All query indices are valid (within bounds of gcdPairs array)
Visualization
Tap to expand
Understanding the Visualization
1
Brute Force Approach
Generate all pairs and calculate GCDs - simple but inefficient O(nΒ²)
2
Frequency Analysis
Count occurrences of each number to avoid redundant calculations
3
Mathematical Insight
Use number theory: count pairs by GCD value using divisibility
4
Inclusion-Exclusion
Remove overcounted pairs to get exact counts for each GCD
Key Takeaway
π― Key Insight: The breakthrough comes from realizing we don't need to generate all pairs. Instead, we can mathematically count how many pairs will have each possible GCD value, dramatically reducing complexity from O(nΒ²) to O(M log M).
π‘
Explanation
AI Ready
π‘ Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code