Minimum Reverse Operations - Problem
๐ Minimum Reverse Operations
You're given an array of length n filled with zeros, except for one single position p that contains a 1. Think of this as a token that you need to move around the array.
Your mission: Move this token to every possible position in the array using a special operation - you can reverse any subarray of length k, but only if the token (the 1) won't land on a banned position.
Goal: Return an array where result[i] is the minimum number of operations needed to move the token to position i, or -1 if it's impossible.
Example: If n=4, p=0, k=3, banned=[1,2], you start with [1,0,0,0] and can reverse subarrays of length 3, but the token cannot land on positions 1 or 2.
Input & Output
example_1.py โ Basic Case
$
Input:
n = 4, p = 0, banned = [1, 2], k = 4
โบ
Output:
[0, -1, -1, 1]
๐ก Note:
Start with token at position 0. With k=4, we can reverse the entire array [1,0,0,0] โ [0,0,0,1], moving token to position 3 in 1 step. Positions 1 and 2 are banned and unreachable.
example_2.py โ Multiple Steps
$
Input:
n = 5, p = 0, banned = [2, 4], k = 3
โบ
Output:
[0, 2, -1, 1, -1]
๐ก Note:
Starting at 0: reverse [0,1,2] gets us to position 2, but it's banned. We can reach position 3 in 1 step by reversing [0,1,2] to move to position 2, then position 1 in 2 steps. Positions 2 and 4 remain unreachable.
example_3.py โ Edge Case
$
Input:
n = 3, p = 1, banned = [], k = 3
โบ
Output:
[2, 0, 2]
๐ก Note:
Start with token at position 1. Can reverse entire array [0,1,0] โ [0,1,0] (no change) or shift positions. Need 2 operations to reach positions 0 and 2.
Constraints
- 1 โค n โค 105
- 0 โค p < n
- 0 โค banned.length โค n - 1
- 0 โค banned[i] < n
- 1 โค k โค n
- All values in banned are unique
- p is not in banned
Visualization
Tap to expand
Understanding the Visualization
1
Initial State
Token starts at position p, with some positions banned (marked in red)
2
First Moves
Apply reverse operations of length k to reach new positions in 1 step
3
Expand Search
From each new position, continue exploring to find positions reachable in 2 steps
4
Complete Map
Continue until all reachable positions are found with minimum steps
Key Takeaway
๐ฏ Key Insight: Model as shortest path in implicit graph where BFS guarantees minimum operations, using parity optimization for efficient transitions
๐ก
Explanation
AI Ready
๐ก Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code