Maximum XOR With an Element From Array - Problem
You are given an array nums consisting of non-negative integers. You are also given a queries array, where queries[i] = [xi, mi].
The answer to the ith query is the maximum bitwise XOR value of xi and any element of nums that does not exceed mi. In other words, the answer is max(nums[j] XOR xi) for all j such that nums[j] <= mi. If all elements in nums are larger than mi, then the answer is -1.
Return an integer array answer where answer.length == queries.length and answer[i] is the answer to the ith query.
Input & Output
Example 1 — Basic Queries
$
Input:
nums = [0,1,2,3,4], queries = [[3,1],[1,3],[5,6]]
›
Output:
[3,3,7]
💡 Note:
Query [3,1]: Valid elements ≤1 are {0,1}. Max XOR: max(0⊕3, 1⊕3) = max(3,2) = 3. Query [1,3]: Valid elements ≤3 are {0,1,2,3}. Max XOR: max(0⊕1, 1⊕1, 2⊕1, 3⊕1) = max(1,0,3,2) = 3. Query [5,6]: All elements ≤6, Max XOR: max(0⊕5, 1⊕5, 2⊕5, 3⊕5, 4⊕5) = max(5,4,7,6,1) = 7.
Example 2 — No Valid Elements
$
Input:
nums = [5,2,4,6,6,3], queries = [[12,4],[8,1],[6,3]]
›
Output:
[15,-1,5]
💡 Note:
Query [12,4]: Valid elements ≤4 are {2,4,3}. Max XOR: max(2⊕12, 4⊕12, 3⊕12) = max(14,8,15) = 15. Query [8,1]: No elements ≤1, return -1. Query [6,3]: Valid elements ≤3 are {2,3}. Max XOR: max(2⊕6, 3⊕6) = max(4,5) = 5.
Example 3 — Edge Case
$
Input:
nums = [0], queries = [[0,0]]
›
Output:
[0]
💡 Note:
Single element case: 0 ≤ 0, so 0 XOR 0 = 0.
Constraints
- 1 ≤ nums.length, queries.length ≤ 105
- queries[i].length == 2
- 0 ≤ nums[j], xi, mi ≤ 109
Visualization
Tap to expand
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code