Final Array State After K Multiplication Operations II - Problem
Imagine you're running a number amplification system where you need to repeatedly find and boost the smallest values in an array. You are given an integer array nums, an integer k representing the number of operations to perform, and an integer multiplier to boost values with.
Your task is to perform exactly k operations on the array. In each operation:
- ๐ฏ Find the minimum value in the array
- ๐ If there are multiple minimums, select the first occurrence (leftmost)
- โจ Replace that minimum with
minimum ร multiplier
After all k operations are complete, apply modulo 109 + 7 to every element to prevent overflow. Return the final transformed array.
This is an advanced version of the problem that requires efficient handling of large values and operations.
Input & Output
example_1.py โ Basic Operations
$
Input:
nums = [2, 1, 3, 5], k = 5, multiplier = 2
โบ
Output:
[8, 4, 6, 5]
๐ก Note:
Op 1: min=1 at index 1, multiply โ [2,2,3,5]. Op 2: min=2 at index 0, multiply โ [4,2,3,5]. Op 3: min=2 at index 1, multiply โ [4,4,3,5]. Op 4: min=3 at index 2, multiply โ [4,4,6,5]. Op 5: min=4 at index 0, multiply โ [8,4,6,5]
example_2.py โ Single Element
$
Input:
nums = [100000], k = 2, multiplier = 1000000
โบ
Output:
[49]
๐ก Note:
Op 1: 100000 * 1000000 = 100000000000 โก 49 (mod 10^9+7). Op 2: 49 * 1000000 = 49000000 โก 49000000 (mod 10^9+7). Final: [49000000] but this exceeds mod, so [49]
example_3.py โ Large Numbers
$
Input:
nums = [1, 2], k = 3, multiplier = 4
โบ
Output:
[16, 8]
๐ก Note:
Op 1: min=1, multiply โ [4,2]. Op 2: min=2, multiply โ [4,8]. Op 3: min=4, multiply โ [16,8]. All values fit within modulo range.
Constraints
- 1 โค nums.length โค 104
- 1 โค nums[i] โค 109
- 1 โค k โค 109
- 1 โค multiplier โค 106
- All operations must use modulo 109 + 7
Visualization
Tap to expand
Understanding the Visualization
1
Smart Tracking
Use a priority system (min-heap) to always know the shortest plant instantly
2
Efficient Boosting
Apply fertilizer to the shortest plant and automatically update the tracking system
3
Cycle Detection
For many operations, detect when the pattern becomes regular and use mathematical shortcuts
Key Takeaway
๐ฏ Key Insight: Using a min-heap transforms O(kรn) brute force into O(k log n) optimal solution, with mathematical optimization handling large k values efficiently through cycle detection and modular arithmetic.
๐ก
Explanation
AI Ready
๐ก Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code