
http://www.tutorialspoint.com/postgresql/postgresql_like_clause.htm Copyright © tutorialspoint.com

POSTGRESQL - LIKE CLAUSEPOSTGRESQL - LIKE CLAUSE

The PostgreSQL LIKE operator is used to match text values against a pattern using wildcards. If the
search expression can be matched to the pattern expression, the LIKE operator will return true,
which is 1.

There are two wildcards used in conjunction with the LIKE operator:

The percent sign

The underscore _

The percent sign represents zero, one, or multiple numbers or characters. The underscore
represents a single number or character. These symbols can be used in combinations.

If either of these two signs is not used in conjunction with the LIKE clause, then the LIKE acts like
the equals operator.

Syntax:
The basic syntax of % and _ is as follows:

SELECT FROM table_name
WHERE column LIKE 'XXXX%'

or

SELECT FROM table_name
WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name
WHERE column LIKE 'XXXX_'

or

SELECT FROM table_name
WHERE column LIKE '_XXXX'

or

SELECT FROM table_name
WHERE column LIKE '_XXXX_'

You can combine N number of conditions using AND or OR operators. Here XXXX could be any
numeric or string value.

Example:
Here are number of examples showing WHERE part having different LIKE clause with '%' and '_'
operators:

Statement Description

WHERE SALARY::text LIKE '200%' Finds any values that start with 200

WHERE SALARY::text LIKE '%200%' Finds any values that have 200 in any position

WHERE SALARY::text LIKE '_00%' Finds any values that have 00 in the second and third
positions

http://www.tutorialspoint.com/postgresql/postgresql_like_clause.htm

WHERE SALARY::text LIKE '2_%_%' Finds any values that start with 2 and are at least 3
characters in length

WHERE SALARY::text LIKE '%2' Finds any values that end with 2

WHERE SALARY::text LIKE '_2%3' Finds any values that have a 2 in the second position
and end with a 3

WHERE SALARY::text LIKE '2___3' Finds any values in a five-digit number that start with 2
and end with 3

Postgres LIKE is String compare only. Hence, we need to explicitly cast the integer
column to string as in the examples above.

Let us take a real example, consider the table COMPANY having records as follows:

select * from COMPANY;
 id | name | age | address | salary
----+-------+-----+-----------+--------
 1 | Paul | 32 | California| 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall| 45000
 7 | James | 24 | Houston | 10000
(7 rows)

Following is an example, which would display all the records from COMPANY table where AGE
starts with 2:

testdb=# SELECT * FROM COMPANY WHERE AGE::text LIKE '2%';

This would produce the following result:

 id | name | age | address | salary
----+-------+-----+-------------+--------
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall | 45000
 7 | James | 24 | Houston | 10000
 8 | Paul | 24 | Houston | 20000
(7 rows)

Following is an example, which would display all the records from COMPANY table where ADDRESS
will have a hyphen − inside the text:

testdb=# SELECT * FROM COMPANY WHERE ADDRESS LIKE '%-%';

This would produce the following result:

 id | name | age | address | salary
----+------+-----+---+--------
 4 | Mark | 25 | Rich-Mond | 65000
 6 | Kim | 22 | South-Hall | 45000
(2 rows)

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

/postgresql/company.sql

