POSTGRESQL - DATE/TIME FUNCTIONS AND OPERATORS

We had discussed about Date/Time data types in the chapter Data Types. Now, let us see the

Date/Time operators and Functions.

The following table lists the behaviors of the basic arithmetic operators:

Operator
+

+

Example
date '2001-09-28' + integer '7"

date '2001-09-28"' + interval '1
hour!

date '2001-09-28' + time '03:00'
interval '1 day' + interval '1 hour'

timestamp '2001-09-28 01:00"' +
interval '23 hours'

time '01:00' + interval '3 hours'
- interval '23 hours'

date '2001-10-01' - date '2001-09-
28'

date '2001-10-01' - integer '7"

date '2001-09-28' - interval '1
hour!

time '05:00' - time '03:00'
time '05:00' - interval '2 hours'

timestamp '2001-09-28 23:00' -
interval '23 hours'

interval '1 day' - interval '1 hour'

timestamp '2001-09-29 03:00' -
timestamp '2001-09-27 12:00'

900 * interval '1 second'
21 *interval '1 day'

double precision '3.5' * interval 'l
hour'

interval '1 hour' / double precision
I1.5I

Result
date '2001-10-05'
timestamp '2001-09-28 01:00:00'

timestamp '2001-09-28 03:00:00'
interval '1 day 01:00:00'
timestamp '2001-09-29 00:00:00'

time '04:00:00'
interval '-23:00:00'

integer '3' days

date '2001-09-24'
timestamp '2001-09-27 23:00:00'

interval '02:00:00'
time '03:00:00'
timestamp '2001-09-28 00:00:00'

interval '1 day -01:00:00'
interval '1 day 15:00:00'

interval '00:15:00'
interval '21 days'

interval '03:30:00'

interval '00:40:00'

Following is the list of all important Date and Time related functions available.

Function

AGE

Description

Subtract arguments


http://www.tutorialspoint.com/postgresql/postgresql_date_time.htm
/postgresql//postgresql_data_types.htm
/postgresql/postgresql_date_time.htm#function_age

CURRENT DATE/TIME Current date and time

DATE PART Get subfield equivalenttoextract

EXTRACT Get subfield

ISFINITE Test for finite date,time and interval not + / - infinity
JUSTIFY Adjust interval

AGEtimestamp, timestamp,

AGEtimestamp
Function Description
AGE When invoked with the TIMESTAMP form of the second argument, AGE

timestamp, timestamp ~ subtract arguments, producing a "symbolic" result that uses years and
months and is of type INTERVAL.

AGEtimestamp When invoked with only the TIMESTAMP as argument, AGE subtracts from
the current_date atmidnight.

Example for function AGEtimestamp, timestamp is:

testdb=# SELECT AGE(timestamp '2001-04-10', timestamp '1957-06-13');

Above PostgreSQL statement will produce the following result:

43 years 9 mons 27 days
Example for function AGEtimestamp is:
testdb=# select age(timestamp '1957-06-13");

Above PostgreSQL statement will produce the following result:

55 years 10 mons 22 days

CURRENT DATE/TIME

PostgreSQL provides a number of functions that return values related to the current date and time.
Following are some functions:

Function Description

CURRENT_DATE Delivers current date.
CURRENT_TIME Delivers values with time zone.
CURRENT_TIMESTAMP Delivers values with time zone.
CURRENT _TIMEprecision Optionally takes a precision

parameter, which causes the result
to be rounded to that many
fractional digits in the seconds


/postgresql/postgresql_date_time.htm#function_currentdatetime
/postgresql/postgresql_date_time.htm#function_datepart
/postgresql/postgresql_date_time.htm#function_extract
/postgresql/postgresql_date_time.htm#function_isfinite
/postgresql/postgresql_date_time.htm#function_justify

CURRENT_TIMESTAMPprecision

LOCALTIME
LOCALTIMESTAMP
LOCALTIMEprecision

LOCALTIMESTAMPprecision

Examples using the functions in the table above:

testdb=# SELECT CURRENT_TIME;
timetz

08:01:34.656+05:30

(1 row)

testdb=# SELECT CURRENT_DATE;
date

2013-05-05

(1 row)

testdb=# SELECT CURRENT_TIMESTAMP;
now

2013-05-05 08:01:45.375+05:30
(1 row)

testdb=# SELECT CURRENT_TIMESTAMP(2);
timestamptz

2013-05-05 08:01:50.89+05:30
(1 row)

testdb=# SELECT LOCALTIMESTAMP;
timestamp

2013-05-05 08:01:55.75
(1 row)

field.

Optionally takes a precision
parameter, which causes the result
to be rounded to that many
fractional digits in the seconds
field.

Delivers values without time zone.
Delivers values without time zone.

Optionally takes a precision
parameter, which causes the result
to be rounded to that many
fractional digits in the seconds
field.

Optionally takes a precision
parameter, which causes the result
to be rounded to that many
fractional digits in the seconds
field.

PostgreSQL also provides functions that return the start time of the current statement, as well as
the actual current time at the instant the function is called. These functions are:

Function Description



transaction_timestamp Itis equivalent to CURRENT_TIMESTAMP, but is named to clearly reflect
what it returns.

statement_timestamp It returns the start time of the current statement.

clock_timestamp It returns the actual current time, and therefore its value changes even
within a single SQL command.

timeofday It returns the actual current time, but as a formatted text string rather
than a timestamp with time zone value.

now Itis a traditional PostgreSQL equivalent to transaction_timestamp.

DATE_PARTtext, timestamp,
DATE_PARText, interval,
DATE_TRUNC:ext, timestamp

Function Description

DATE_PART 'field , source . . ]
- These functions get the subfields. The field parameter needs

to be a string value, not a name.

The valid field names are: century, day, decade, dow, doy,
epoch, hour, isodow, isoyear, microseconds, millennium,
milliseconds, minute, month, quarter, second, timezone,
timezone_hour, timezone_minute, week, year.

DATE_TRUNC 'field’, source _ o o _
- This function is conceptually similar to the trunc function for

numbers. source is a value expression of type timestamp or
interval. field selects to which precision to truncate the input
value. The return value is of type timestamp or interval.

The valid values for field are : microseconds, milliseconds,
second, minute, hour, day, week, month, quarter, year,
decade, century, millennium

Following are examples for DATE_PART('field', source) functions:

testdb=# SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
date_part

testdb=# SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
date_part

(1 row)

Following are examples for DATE_TRUNC('field', source) functions:

testdb=# SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40'");
date_trunc

2001-02-16 20:00:00



(1 row)

testdb=# SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40'");
date_trunc

2001-01-01 00:00:00
(1 row)

EXTRACTfieldfromtimestamp,
EXTRACTfieldfrominterval

The EXTRACT fieldFROMsource function retrieves subfields such as year or hour from date/time
values. source must be a value expression of type timestamp, time, or interval. field is an identifier
or string that selects what field to extract from the source value. The EXTRACT function returns
values of type double precision.

The following are valid field names similartoDATE ,ARTfunctionfieldnames:century, day, decade, dow,

doy, epoch, hour, isodow, isoyear, microseconds, millennium, milliseconds, minute, month,
quarter, second, timezone, timezone_hour, timezone_minute, week, year.

Following are examples for EXTRACT('field', source) functions:

testdb=# SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
date_part

testdb=# SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
date_part

(1 row)

ISFINITEdate,
ISFINITEtimestamp,
ISFINITEinterval

Function Description
ISFINITEdate Tests for finite date.
ISFINITEtimestamp Tests for finite time stamp.

ISFINIT Einterval Tests for finite interval.

Following are the examples for the ISFINITE functions:

testdb=# SELECT isfinite(date '2001-02-16");
isfinite

testdb=# SELECT isfinite(timestamp '2001-02-16 21:28:30');
isfinite



testdb=# SELECT isfinite(interval '4 hours');
isfinite

JUSTIFY_DAYSinterval,
JUSTIFY_HOURSinterval,
JUSTIFY_INTERVALinterval

Function Description
JUSTIFY_DAYS Adjusts interval so 30-day time periods are represented as months. Return
interval the interval type

JUSTIFY_HOURS Adjusts interval so 24-hour time periods are represented as days. Return
interval the interval type

JUSTIFY_INTERVAL Adjusts interval using JUSTIFY_DAYS and JUSTIFY_HOURS, with additional
interval sign adjustments. Return the interval type

Following are the examples for the ISFINITE functions:

testdb=# SELECT justify_days(interval '35 days');
justify_days

1 mon 5 days

(1 row)

testdb=# SELECT justify_hours(interval '27 hours');
justify_hours

1 day 03:00:00
(1 row)

testdb=# SELECT justify_interval(interval 'l mon -1 hour');
justify_interval
29 days 23:00:00

(1 _row)

Loading [Mathjax]/jax/output/HTML-CSS/jax.js



