POSTGRESQL - DATA TYPE

This chapter discusses PostgreSQL Data Types. While creating table, for each column, you specify
a data type, i.e., what kind of data you want to store in the table fields.

This enables several benefits:

¢ Consistency: Operations against columns of same data type give consistent results and are
usually the fastest.

¢ Validation: Proper use of data types implies format validation of data and rejection of data
outside the scope of data type.

e Compactness: As a column can store a single type of value, it is stored in a compact way.

e Performance: Proper use of data types gives the most efficient storage of data. The values
stored can be processed quickly, which enhances the performance.

PostgreSQL supports a wide set of Data Types. Besides, users can create their own custom data
type using CREATE TYPE SQL command. There are different categories of data types in
PostgreSQL. They are discussed as below:

Numeric Types

Numeric types consist of two-byte, four-byte, and eight-byte integers, four-byte and eight-byte
floating-point numbers, and selectable-precision decimals. Table below lists the available types.

Name Storage Description Range
Size

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for integer -2147483648 to
+2147483647

bigint 8 bytes large-range integer -
9223372036854775808
to
9223372036854775807

decimal variable user-specified precision,exact up to 131072 digits

before the decimal
point; up to 16383
digits after the decimal
point

numeric variable user-specified precision,exact up to 131072 digits
before the decimal
point; up to 16383
digits after the decimal

point

real 4 bytes variable-precision,inexact 6 decimal digits
precision

double precision 8 bytes variable-precision,inexact 15 decimal digits
precision

smallserial 2 bytes small autoincrementing integer 1to 32767

serial 4 bytes autoincrementing integer 1to 2147483647

http://www.tutorialspoint.com/postgresql/postgresql_data_types.htm

bigserial 8 bytes large autoincrementing integer 1to
9223372036854775807

Monetary Types

The money type stores a currency amount with a fixed fractional precision. Values of the numeric,
int, and bigint data types can be cast to money. Using Floating point numbers is not recommended
to handle money due to the potential for rounding errors.

Name Storage Description Range
Size
money 8 bytes currency amount -92233720368547758.08 to

+92233720368547758.07

Character Types

The table below lists general-purpose character types available in PostgreSQL.

Name Description
character varyingn, varcharn variable-length with limit
charactern, charn fixed-length, blank padded

text variable unlimited length

Binary Data Types

The bytea data type allows storage of binary strings as in the table below.

Name Storage Size Description

bytea 1 or 4 bytes plus the actual binary string variable-length binary string

Date/Time Types

PostgreSQL supports the full set of SQL date and time types, as shown in table below. Dates are
counted according to the Gregorian calendar. Here, all the types have resolution of 1
microsecond / 14 digits except date type, whose resolution is day.

Name Storage Size Description Low Value High Value
timestamp [p] 8 bytes both date and 4713 BC 294276 AD
[without time time notimezone
zone]
timestamp [p] 8 bytes both date and 4713 BC 294276 AD
with time zone time, with time

zone
date 4 bytes date notimeofday 4713 BC 5874897 AD
time [p] [without 8 bytes time of day nodate 00:00:00 24:00:00

time zone]

time [p] with 12 bytes times of day only, 00:00:00+1459 24:00:00-1459

time zone with time zone
interval [fields][12 bytes time interval -178000000 178000000
pl years years

Boolean Type

PostgreSQL provides the standard SQL type boolean. The boolean type can have several states:
true, false, and a third state, unknown, which is represented by the SQL null value.

Name Storage Size Description

boolean 1 byte state of true or false

Enumerated Type

Enumerated enum types are data types that comprise a static, ordered set of values. They are
equivalent to the enum types supported in a number of programming languages.

Unlike other types, Enumerated Types need to be created using CREATE TYPE command. This type

is used to store a static, ordered set of values, for example compass directions, i.e., NORTH,
SOUTH, EAST, and WEST or days of the week as below:

CREATE TYPE week AS ENUM ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun');

Enumerated once created, they can be used like any other types.

Geometric Type

Geometric data types represent two-dimensional spatial objects. The most fundamental type, the
point, forms the basis for all of the other types.

Name Storage Size Representation Description
point 16 bytes Pointon a plane X,y

line 32 bytes Infinite line notfullyimplemented (x1, y1,x2, y2)
Iseg 32 bytes Finite line segment (x1, y1,x2, y2)
box 32 bytes Rectangular box (x1, y1,x2, y2)
path 16+16n bytes Closed path similartopolygon (x1, y1,...)
path 16+16n bytes Open path [x1, y1,...]
polygon 40+16n Polygon similartoclosedpath (x1,y1,...)
circle 24 bytes Circle <x,y,r>

centerpointandradius

Network Address Type

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses. It is better to use these types
instead of plain text types to store network addresses, because these types offer input error
checking and specialized operators and functions.

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks
inet 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

Bit String Type

Bit String Types are used to store bit masks. They are either 0 or 1. There are two SQL bit types:
bitn and bit varyingn, where n is a positive integer.

Text Search Type

This type supports full text search, which is the activity of searching through a collection of natural-
language documents to locate those that best match a query. There are two Data Types for this :

Name Description

tsvector This is a sorted list of distinct words that have been normalized to merge different
variants of the same word, called as "lexemes".

tsquery This stores lexemes that are to be searched for, and combines them honoring the
Boolean operators & AND, | OR, and ! NOT. Parentheses can be used to enforce
grouping of the operators.

UUID Type

A UUID UniversallyUniqueldentifiers is written as a sequence of lower-case hexadecimal digits, in
several groups separated by hyphens, specifically a group of 8 digits followed by three groups of 4
digits followed by a group of 12 digits, for a total of 32 digits representing the 128 bits.

An example of a UUID is: 550e8400-e29b-41d4-a716-446655440000
XML Type

The xml data type can be used to store XML data. For storing XML data, first you create XML values
using function xmlparse as follows:

XMLPARSE (DOCUMENT '<?xml version="1.0"7?>

<tutorial>

<title>PostgreSQL Tutorial </title>
<topics>...</topics>

</tutorial>"')

XMLPARSE (CONTENT 'xyz<foo>bar</foo><bar>foo</bar>")

JSON Type
The json data type can be used to store JSON JavaScriptObjectNotation data. Such data can also be
stored as text, but the json data type has the advantage of checking that each stored value is a

valid JSON value. There are also related support functions available which can be used directly to
handle JSON data type as follows:

Example Example Result
array_to_json'1, 5,99, 100 ::inf[] [[1,51.[99,100]]

row_to_jsonrow(l, foo') {"f1":1,"f2":"foo"}

Array Type
PostgreSQL gives opportunity to define a column of a table as a variable length multidimensional

array. Arrays of any built-in or user-defined base type, enum type, or composite type can be
created.

Declaration of Arrays
Array type can be declared as:

CREATE TABLE monthly_savings (
name text,
saving_per_quarter integer|[],
scheme text[][]

);
or by using keyword "ARRAY" as:

CREATE TABLE monthly_savings (
name text,
saving_per_quarter integer ARRAY[4],
scheme text[][]

);

Inserting values

Array values can be inserted as a literal constant, enclosing the element values within curly braces
and separating them by commas. An example is as below:

INSERT INTO monthly_savings

VALUES ('Manisha',

'{20000, 14600, 23500, 13250}',
I{{"FD", "MF"}, {“FD“, IIPrOpertyll}}l);

Accessing Arrays

An example for accessing Arrays is shown below. The command below will select persons whose
savings are more in second quarter than fourth quarter.

SELECT name FROM monhly_savings WHERE saving_per_quarter[2] > saving_per_quarter[4];

Modifying Arrays
An example of modifying arrays is as shown below.

UPDATE monthly_savings SET saving_per_quarter = '{25000,25000,27000,27000}"'
WHERE name = 'Manisha';

or using the ARRAY expression syntax:

UPDATE monthly_savings SET saving_per_quarter = ARRAY[25000, 25000, 27000, 27000]
WHERE name = 'Manisha';

Searching Arrays
An example of searching arrays is as shown below.

SELECT * FROM monthly_savings WHERE saving_per_quarter[1] = 10000 OR
saving_per_quarter[2] = 10000 OR
saving_per_quarter[3] = 10000 OR

saving_per_quarter[4] = 10000;

If the size of array is known above search method can be used. Else, the following example shows
how to search when size is not known.

SELECT * FROM monthly_savings WHERE 10000 = ANY (saving_per_quarter);

Composite Types

This type represents a list of field names and their data types, i.e., structure of a row or record of a
table.

Declaration of Composite Types
The following example shows how to declare a composite type:

CREATE TYPE inventory_item AS (
name text,
supplier_id integer,
price numeric
);
This data type can be used in the create tables as below:

CREATE TABLE on_hand (
item inventory_item,
count integer

);

Composite Value Input

Composite values can be inserted as a literal constant, enclosing the field values within
parentheses and separating them by commas. An example is as below:

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);

This is valid for the inventory_item defined above. The ROW keyword is actually optional as long as
you have more than one field in the expression.

Accessing Composite Types
To access a field of a composite column, use a dot followed by the field name, much like selecting

a field from a table name. For example, to select some subfields from our on_hand example table,
the query would be as shown below:

SELECT (item).name FROM on_hand WHERE (item).price > 9.99;

you can even use the table name as well forinstanceinamultitablequery, like this:

SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;

Range Types

Range types represent data type that uses a range of data. Range type can be discrete ranges
e. g., allintegervalues1to10 or continuous ranges e. g., anypointintimebetween10: 00amand11: 00am.

The built-in range types available include ranges:
e int4range - Range of integer

e int8range - Range of bigint

e numrange - Range of numeric

e tsrange - Range of timestamp without time zone
e tstzrange - Range of timestamp with time zone
¢ daterange - Range of date

Custom range types can be created to make new types of ranges available, such as IP address
ranges using the inet type as a base, or float ranges using the float data type as a base.

Range types support inclusive and exclusive range boundaries using the [] and characters,
respectively, e.g., '[4,9] represents all integers starting from and including 4 up to but not
including 9.

Object Identifier Types

Object identifiers OIDs are used internally by PostgreSQL as primary keys for various system tables.
If WITH OIDS is specified or default_with_oids configuration variable is enabled, only in such cases
OIDs are added to user-created tables. The following table lists several alias types. The OID alias
types have no operations of their own except for specialized input and output routines.

Name References Description Value Example

oid any numeric object identifier 564182

regproc pg_proc function name sum

regprocedure pg_proc function with argument types sumint4

regoper pg_operator operator name +

regoperator pg_operator operator with argument types *integer, integer Or -NONE, integer
regclass pg_class relation name pg_type

regtype pg_type data type name integer

regconfig pg_ts config textsearch configuration english

regdictionary pg_ts dict text search dictionary simple

Pseudo Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively
called pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to
declare a function's argument or result type. The table below lists the existing pseudo-types.

Name Description

any Indicates that a function accepts any input data type.

anyelement Indicates that a function accepts any data type.

anyarray Indicates that a function accepts any array data type.
anynonarray Indicates that a function accepts any non-array data type.
anyenum Indicates that a function accepts any enum data type.
anyrange Indicates that a function accepts any range data type.

cstring Indicates that a function accepts or returns a null-terminated C string.

internal
language_handler
fdw_handler
record

trigger

void

Processing math: 100%

Indicates that a function accepts or returns a server-internal data type.

A procedural language call handler is declared to return language_handler.
A foreign-data wrapper handler is declared to return fdw_handler.
Identifies a function returning an unspecified row type.

A trigger function is declared to return trigger.

Indicates that a function returns no value.

