
http://www.tutorialspoint.com/plsql/plsql_object_oriented.htm Copyright © tutorialspoint.com

PL/SQL - OBJECT ORIENTEDPL/SQL - OBJECT ORIENTED

PL/SQL allows defining an object type, which helps in designing object-oriented database in Oracle.
An object type allows you to crate composite types. Using objects allow you implementing real
world objects with specific structure of data and methods for operating it. Objects have attributes
and methods. Attributes are properties of an object and are used for storing an object's state; and
methods are used for modeling its behaviors.

Objects are created using the CREATE [OR REPLACE] TYPE statement. Below is an example to
create a simple address object consisting of few attributes:

CREATE OR REPLACE TYPE address AS OBJECT
(house_no varchar2(10),
 street varchar2(30),
 city varchar2(20),
 state varchar2(10),
 pincode varchar2(10)
);
/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Let's create one more object customer where we will wrap attributes and methods together to
have object oriented feeling:

CREATE OR REPLACE TYPE customer AS OBJECT
(code number(5),
 name varchar2(30),
 contact_no varchar2(12),
 addr address,
 member procedure display
);
/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Instantiating an Object
Defining an object type provides a blueprint for the object. To use this object, you need to create
instances of this object. You can access the attributes and methods of the object using the instance
name and the access operator . as follows:

DECLARE
 residence address;
BEGIN
 residence := address('103A', 'M.G.Road', 'Jaipur', 'Rajasthan','201301');
 dbms_output.put_line('House No: '|| residence.house_no);
 dbms_output.put_line('Street: '|| residence.street);
 dbms_output.put_line('City: '|| residence.city);
 dbms_output.put_line('State: '|| residence.state);
 dbms_output.put_line('Pincode: '|| residence.pincode);
END;
/

When the above code is executed at SQL prompt, it produces the following result:

House No: 103A

http://www.tutorialspoint.com/plsql/plsql_object_oriented.htm

Street: M.G.Road
City: Jaipur
State: Rajasthan
Pincode: 201301

PL/SQL procedure successfully completed.

Member Methods
Member methods are used for manipulating the attributes of the object. You provide the
declaration of a member method while declaring the object type. The object body defines the
code for the member methods. The object body is created using the CREATE TYPE BODY
statement.

Constructors are functions that return a new object as its value. Every object has a system
defined constructor method. The name of the constructor is same as the object type. For example:

residence := address('103A', 'M.G.Road', 'Jaipur', 'Rajasthan','201301');

The comparison methods are used for comparing objects. There are two ways to compare
objects:

Map method: The Map method is a function implemented in such a way that its value
depends upon the value of the attributes. For example, for a customer object, if the customer
code is same for two customers, both customers could be the same and one. So the
relationship between these two objects would depend upon the value of code.

Order method: The Order methods implement some internal logic for comparing two
objects. For example, for a rectangle object, a rectangle is bigger than another rectangle if
both its sides are bigger.

Using Map method
Let us try to understand above concepts using the following rectangle object:

CREATE OR REPLACE TYPE rectangle AS OBJECT
(length number,
 width number,
 member function enlarge(inc number) return rectangle,
 member procedure display,
 map member function measure return number
);
/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Creating the type body:

CREATE OR REPLACE TYPE BODY rectangle AS
 MEMBER FUNCTION enlarge(inc number) return rectangle IS
 BEGIN
 return rectangle(self.length + inc, self.width + inc);
 END enlarge;

 MEMBER PROCEDURE display IS
 BEGIN
 dbms_output.put_line('Length: '|| length);
 dbms_output.put_line('Width: '|| width);
 END display;

 MAP MEMBER FUNCTION measure return number IS
 BEGIN
 return (sqrt(length*length + width*width));

 END measure;
END;
/

When the above code is executed at SQL prompt, it produces the following result:

Type body created.

Now using the rectangle object and its member functions:

DECLARE
 r1 rectangle;
 r2 rectangle;
 r3 rectangle;
 inc_factor number := 5;
BEGIN
 r1 := rectangle(3, 4);
 r2 := rectangle(5, 7);
 r3 := r1.enlarge(inc_factor);
 r3.display;

 IF (r1 > r2) THEN -- calling measure function
 r1.display;
 ELSE
 r2.display;
 END IF;
END;
/

When the above code is executed at SQL prompt, it produces the following result:

Length: 8
Width: 9
Length: 5
Width: 7

PL/SQL procedure successfully completed.

Using Order method
Now, the same effect could be achieved using an order method. Let us recreate the
rectangle object using an order method:

CREATE OR REPLACE TYPE rectangle AS OBJECT
(length number,
 width number,
 member procedure display,
 order member function measure(r rectangle) return number
);
/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Creating the type body:

CREATE OR REPLACE TYPE BODY rectangle AS
 MEMBER PROCEDURE display IS
 BEGIN
 dbms_output.put_line('Length: '|| length);
 dbms_output.put_line('Width: '|| width);
 END display;

 ORDER MEMBER FUNCTION measure(r rectangle) return number IS

 BEGIN
 IF(sqrt(self.length*self.length + self.width*self.width)> sqrt(r.length*r.length +
r.width*r.width)) then
 return(1);
 ELSE
 return(-1);
 END IF;
 END measure;
END;
/

When the above code is executed at SQL prompt, it produces the following result:

Type body created.

Using the rectangle object and its member functions:

DECLARE
 r1 rectangle;
 r2 rectangle;
BEGIN
 r1 := rectangle(23, 44);
 r2 := rectangle(15, 17);
 r1.display;
 r2.display;
 IF (r1 > r2) THEN -- calling measure function
 r1.display;
 ELSE
 r2.display;
 END IF;
END;
/

When the above code is executed at SQL prompt, it produces the following result:

Length: 23
Width: 44
Length: 15
Width: 17
Length: 23
Width: 44

PL/SQL procedure successfully completed.

Inheritance for PL/SQL Objects:
PL/SQL allows creating object from existing base objects. To implement inheritance, the base
objects should be declared as NOT FINAL. The default is FINAL.

The following programs illustrate inheritance in PL/SQL Objects. Let us create another object
named TableTop, which is inheriting from the Rectangle object. Creating the base rectangle
object:

CREATE OR REPLACE TYPE rectangle AS OBJECT
(length number,
 width number,
 member function enlarge(inc number) return rectangle,
 NOT FINAL member procedure display) NOT FINAL
/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Creating the base type body:

CREATE OR REPLACE TYPE BODY rectangle AS
 MEMBER FUNCTION enlarge(inc number) return rectangle IS
 BEGIN
 return rectangle(self.length + inc, self.width + inc);
 END enlarge;

 MEMBER PROCEDURE display IS
 BEGIN
 dbms_output.put_line('Length: '|| length);
 dbms_output.put_line('Width: '|| width);
 END display;
END;
/

When the above code is executed at SQL prompt, it produces the following result:

Type body created.

Creating the child object tabletop:

CREATE OR REPLACE TYPE tabletop UNDER rectangle
(
 material varchar2(20);
 OVERRIDING member procedure display
)
/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Creating the type body for the child object tabletop:

CREATE OR REPLACE TYPE BODY tabletop AS
OVERRIDING MEMBER PROCEDURE display IS
BEGIN
 dbms_output.put_line('Length: '|| length);
 dbms_output.put_line('Width: '|| width);
 dbms_output.put_line('Material: '|| material);
END display;
/

When the above code is executed at SQL prompt, it produces the following result:

Type body created.

Using the tabletop object and its member functions:

DECLARE
 t1 tabletop;
 t2 tabletop;
BEGIN
 t1:= tabletop(20, 10, 'Wood');
 t2 := tabletop(50, 30, 'Steel');
 t1.display;
 t2.display;
END;
/

When the above code is executed at SQL prompt, it produces the following result:

Length: 20
Width: 10

Material: Wood
Length: 50
Width: 30
Material: Steel

PL/SQL procedure successfully completed.

Abstract Objects in PL/SQL
The NOT INSTANTIABLE clause allows you to declare an abstract object. You cannot use an
abstract object as it is; you will have to create a subtype or child type of such objects to use its
functionalities.

For example,

CREATE OR REPLACE TYPE rectangle AS OBJECT
(length number,
 width number,
 NOT INSTANTIABLE NOT FINAL MEMBER PROCEDURE display)
 NOT INSTANTIABLE NOT FINAL
/

When the above code is executed at SQL prompt, it produces the following result:

Type created.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

