
http://www.tutorialspoint.com/plsql/plsql_loops.htm Copyright © tutorialspoint.com

PL/SQL - LOOPSPL/SQL - LOOPS

There may be a situation when you need to execute a block of code several number of times. In
general, statements are executed sequentially: The first statement in a function is executed first,
followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages:

PL/SQL provides the following types of loop to handle the looping requirements. Click the following
links to check their detail.

Loop Type Description

PL/SQL Basic LOOP
In this loop structure, sequence of statements is enclosed between
the LOOP and END LOOP statements. At each iteration, the
sequence of statements is executed and then control resumes at
the top of the loop.

PL/SQL WHILE LOOP
Repeats a statement or group of statements while a given
condition is true. It tests the condition before executing the loop
body.

PL/SQL FOR LOOP
Execute a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

Nested loops in PL/SQL
You can use one or more loop inside any another basic loop, while
or for loop.

Labeling a PL/SQL Loop
PL/SQL loops can be labeled. The label should be enclosed by double angle brackets << and >>
and appear at the beginning of the LOOP statement. The label name can also appear at the end of

http://www.tutorialspoint.com/plsql/plsql_loops.htm
/plsql/plsql_basic_loop.htm
/plsql/plsql_while_loop.htm
/plsql/plsql_for_loop.htm
/plsql/plsql_nested_loops.htm

the LOOP statement. You may use the label in the EXIT statement to exit from the loop.

The following program illustrates the concept:

DECLARE
 i number(1);
 j number(1);
BEGIN
 << outer_loop >>
 FOR i IN 1..3 LOOP
 << inner_loop >>
 FOR j IN 1..3 LOOP
 dbms_output.put_line('i is: '|| i || ' and j is: ' || j);
 END loop inner_loop;
 END loop outer_loop;
END;
/

When the above code is executed at SQL prompt, it produces the following result:

i is: 1 and j is: 1
i is: 1 and j is: 2
i is: 1 and j is: 3
i is: 2 and j is: 1
i is: 2 and j is: 2
i is: 2 and j is: 3
i is: 3 and j is: 1
i is: 3 and j is: 2
i is: 3 and j is: 3

PL/SQL procedure successfully completed.

The Loop Control Statements
Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

PL/SQL supports the following control statements. Labeling loops also helps in taking the control
outside a loop. Click the following links to check their details.

Control Statement Description

EXIT statement
The Exit statement completes the loop and control passes to the
statement immediately after END LOOP

CONTINUE statement
Causes the loop to skip the remainder of its body and immediately
retest its condition prior to reiterating.

GOTO statement
Transfers control to the labeled statement. Though it is not
advised to use GOTO statement in your program.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

/plsql/plsql_exit_statement.htm
/plsql/plsql_continue_statement.htm
/plsql/plsql_goto_statement.htm

