
PHP Image Magick

 i

PHP Image Magick

 i

About the Tutorial

Imagick is a PHP extension that allows us to use the ImageMagick API to create and edit

images. ImageMagick is a bitmap image creation, editing, and composition software suite.

DPX, EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD, PNG, Postscript, SVG, and TIFF are

among the formats it can read, convert, and write. It is used for file format conversion,

color quantization, liquid rescaling, dithering, and many artistic effects.

Audience

This tutorial is designed for those learners who wish to acquire knowledge and understand

the Imagick which is a PHP extension of Imagemagick API.

Prerequisites

This tutorial focuses on the Imagick which is the PHP extension of Imagemagick. So, we

assume that the readers of this tutorial have basic knowledge of PHP.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

PHP Image Magick

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

1. PHP ImageMagick – Introduction .. 1

Installation and Configuring .. 1

Installing XAMPP: .. 2

Installing ImageMagick .. 3

Verification .. 7

2. PHP Imagemagick - Background Color .. 9

Identifying the background-color .. 9

Setting a background color .. 10

3. PHP Imagemagick - Image Reflections .. 12

Image flipping .. 12

Image flopping ... 13

4. PHP ImageMagick – Image Cropping ... 15

Image-cropping ... 15

Creating a cropped thumbnail ... 16

Chopping images ... 17

5. PHP ImageMagick – Image Bordering.. 20

Adding 3D border .. 20

Adding a normal border .. 21

6. PHP ImageMagick – Image Resizing .. 23

Resizing images adaptively .. 23

Scaling images to desired dimensions ... 24

7. PHP Imagemagick - Composite Images ... 26

8. PHP Imagemagick - Contrast & Brightness ... 28

PHP Image Magick

 iii

Changing the contrast ... 28

Changing the brightness .. 29

Enhance the contrast... 30

9. PHP Imagemagick - Enhancing & Equalizing ... 33

Enhancing Images .. 33

Equalizing images .. 34

10. PHP Imagemagick - Sharpening & Blurring ... 37

Sharpening Imaging ... 37

Blurring images .. 38

Adding blur filter.. 38

Applying blur by a certain angle .. 39

Simulating motion blur .. 41

11. PHP ImageMagick - Image Tiling ... 43

12. PHP Imagemagick - Image Threshold ... 45

Creating a black threshold image .. 45

Creating a white threshold image ... 46

13. PHP Imagemagick - Modifying Colors ... 48

Colorize image ... 48

Creating a blue shift image .. 49

Replacing colors in images .. 51

Negation of images .. 52

14. PHP Imagemagick - Different effects .. 55

Creating a 3D effect ... 55

Creating a solarizing Effect .. 56

Creating a Wave Filter Effect ... 57

Creating a Swirl Effect ... 59

15. PHP Imagemagick - Securing The Images.. 61

Enciphering an image .. 61

PHP Image Magick

 iv

Deciphering the image .. 62

16. PHP Imagemagick - Simulation Of Sketches ... 64

Simulating a charcoal drawing... 64

Simulating a pencil sketch ... 65

Simulating an oil painting .. 66

17. PHP ImageMagick – Editing TheAppearance ... 69

Vignette image .. 69

Rounding corners .. 70

Polaroid image ... 72

Creation of parallelogram.. 73

18. PHP ImageMagick - Rotation and Rolling .. 75

Rotating an image.. 75

Rolling an image .. 76

19. PHP ImageMagick – Splicing & Spreading ... 78

Image spreading .. 78

Image splicing .. 79

20. PHP ImageMagick – Miscellaneous Functions ... 81

Applying functions ... 81

Image annotation .. 82

Grouping Images ... 83

PHP Image Magick

 1

We know that images are an easy way to improve the user experience of any website.

Many experiments proved that our brain could interpret images much quicker than text.

They also help in attracting attention and triggering emotions. When it comes to presenting

important information, images can be of great value.

How can we create or edit images dynamically, making them suitable for web applications?

'ImageMagick' does that!

What is ImageMagick?

ImageMagick is a freely available robust collection of tools and libraries to perform many

operations on digital images.

 It is a software suite to read, create, edit, compose, convert, and write images in

a variety of formats.

 These formats include DPX, EXR, GIF, JPG, JPEG, PNG, TIFF, etc. (over 200

formats).

 These operations are available from the command line, or C, C++, Perl, Java, PHP,

or Python programming languages. In this tutorial, we will be learning about

ImageMagick in PHP.

What is PHP?

PHP stands for Hypertext pre-processor. It is a server-side scripting language that is

embedded in HTML. It contains various built-in functions which allow for fast development.

These scripts are executed on the server and the software is free to download and use.

What is ImageMagick in PHP?

ImageMagick in PHP is a native extension that does all the operations on images.

Operations also include resizing, flipping, mirroring, rotating, distorting, transforming

images, adjusting image colors, or even drawing text, lines, polygons, ellipses, and curves.

 It is free software delivered as a ready-to-run binary distribution or as source code

that you may use, copy, modify, and distribute in both open and proprietary

applications.

 It utilizes multiple computational threads to increase performance and can read,

process, or write mega-, giga-, or tera-pixel image sizes.

 It runs on Linux, Windows, Mac OS X, iOS, Android OS, and others.

Installation and Configuring

As we know that PHP is a server-side scripting language, using any web servers like

Apache, Nginx, etc. to run PHP scripts would be preferable. This allows you to run the PHP

scripts from your browser.

There is also another way to execute the PHP scripts which is using the command line.

This doesn’t require any web server to be installed. In this tutorial, you will be learning to

implement ImageMagick features using the Apache server. For this, we install XAMPP.

1. PHP ImageMagick – Introduction

PHP Image Magick

 2

XAMPP stands for cross-platform, Apache, Maria DB, PHP, Perl. It is a free and open-

source cross-platform web server solution stack package developed by Apache Friends,

consisting mainly of the Apache HTTP server, Maria DB, and interpreters for scripts

written in PHP and Perl programming languages.

Installing XAMPP:

In this section, you will be able to learn the step-by-step process of installing XAMPP.

Step 1: Open this website - https://www.apachefriends.org

Step 2: Install the latest version of XAMPP available there which is suitable for your

operating system (Windows/Linux/IOS).

Step 3: The file downloaded will be something like 'xampp-windows-x64-7.4.27-2-

VC15-installer’.

Step 4: Run the downloaded file. You get some warning, click 'OK'.

Step 5: The below screen appears, click 'Next'.

Step 6: Select Apache, MySQL, PHP, and phpMyAdmin. and click 'Next'.

https://www.apachefriends.org/

PHP Image Magick

 3

Step 7: In this step, select any specific folder, or else, you can leave it as it is(default).

Click 'Next'.

Step 8: In the next step, the files will be unpacked automatically. After the process

completes, click 'Next'.

Step 9: After it completes 100%, click 'Next'.

Step 10: Now, there appears a dialog box which contains 'Completing the XAMPP setup

wizard', then click 'Finish'.

Installing ImageMagick

In this section, you will learn to install the ImageMagick extension and installer in PHP.

Step 1: Open the website https://mlocati.github.io/articles/php-windows-imagick.html.

Step 2: Download both the ImageMagick extension and installer according to your PHP

configuration, architecture, and thread-safety of your XAMPP version.

https://mlocati.github.io/articles/php-windows-imagick.html

PHP Image Magick

 4

a) Downloaded installer file will be in the form 'ImageMagick-7.1.0-18-vc15-x64.zip'

b) Downloaded ImageMagick extension is in the form 'php-imagick-3.7.0-7.4-ts-vc15-

x64.zip'.

Step 3: Extract all the files from the extension file downloaded (from (b)). And from those

files, copy the ‘php_imagemagick.dll’ file.

Step 4: Paste the file into the ‘ext’ directory of your PHP installation.

PHP Image Magick

 5

Step 5: Extract all files from the installer file downloaded (from (a)). From that, copy all

files starting with CORE_DL / IM_MOP_RL/FILTER which are DLL files. The files start from

‘CORE_RL_bzlib_.dll’ as shown in the below image. Choose the files until where they end

with ‘IM_MOD_RL_yuv_.dll’.

Step 6: Paste those files to the PHP root directory where there is 'php.exe'.

PHP Image Magick

 6

Step 7: Now, go to XAMPP Control Panel. Stop Apache.

Step 8: Click 'Config' and select PHP (php.ini) file.

Step 9: In that file, find 'extensions' in that code. After 'extension=php_ftp.dll' line,

type 'extension=php_imagick.dll'. Save the file.

PHP Image Magick

 7

Step 10: Restart Apache.

Step 11: Installation completed.

Verification

Before directly jumping to the execution part, let us first check whether Imagemagick is

properly installed in PHP on your system. For this, follow the below steps.

Step 1: Go to the browser and click 'localhost'.

Step 2: Go to 'phpinfo' which is in the top right corner.

Step 3: Search for Imagick. The screen must appear as shown below.

PHP Image Magick

 8

Step 4: If it appears, the Imagick setup is successfully done. This package contains the

Imagick module version, Imagick classes, release dates, and all the supported formats.

PHP Image Magick

 9

The background color of a text of an image refers to the color of its background. Using a

suitable color that complements the context of the image or text helps in increasing the

readability and even makes easier to scan.

For example, in the image below, we can see that "TUTORIALS POINT" is written on a plain

background and is not very readable. Selecting an appropriate background color for this

element could improve its visibility.

If we look at the below image, we can observe that this is more readable than the previous

image, the main reason for this is its background color.

In the following sections, we will be learning how to identify the background color of an
image, and how to set the background color for an image.

Identifying the background-color

To identify the background color of an image using ImageMagick, we have a method

named ‘getImageBackgroundColor()’. If nothing is specified or found in the image,

then the default background color is ‘white’.

Syntax

The syntax of this method is shown below –

public Imagick :: getImageBackgroundColor() : ImagickPixel

This method doesn’t take any parameters. The return value is in the form of an RGB triplet

which is a three-element row vector. Each element specifies the red, green, and blue

components of the selected color. So based on that triplet, the user will be able to identify

the color that is present in the background.

Example

The following example shows how to use the `getImageBackgroundColor()` method

in PHP to get the background color of an image. To execute the code, you'll need a local

server environment such as XAMPP.

2. PHP Imagemagick - Background Color

https://www.php.net/manual/en/class.imagickpixel.php

PHP Image Magick

 10

The code starts by creating an Imagick object and then retrieves the background color

with this function. Finally, it prints out an RGB triplet representation of that color on your

server.

<?php

//creating a new imagick object //

$img=new Imagick($_SERVER['DOCUMENT_ROOT'].'/test/image.jpg');

$color=new ImagickPixel($img->getImageBackgroundColor) ;//Get the Background

Color

$colorInfo = $color->getColorAsString (); //Get the Color from ImagickPixel

echo $colorInfo; //display colorinfo as output

?>

Assume that the following is the input image (image.jpg) in the program –

Output

On executing the above program, it generates the following output –

srgb(0, 0, 0)

The output obtained is srgb (0,0,0) which is ‘black’.

Setting a background color

There are a few cases where we need to set the background colors for the images,

especially the images having text to increase their readability. To set the background color

of an image in PHP, we use the method ‘setImageBackgroundColor()’.

Syntax

The syntax for this method is shown below:

public Imagick::setImageBackgroundColor(mixed $background): bool

https://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.mixed

PHP Image Magick

 11

This method accepts 'background' as an argument, which holds the desired background

color. Upon successful execution, it returns true and generates an image with the specified

background color.

Example

This PHP code snippet shows how to use the `setImageBackgroundColor()` function

to set the background color of an image.

 First, a new Imagick object is created and the image is read in as input. Then, the

background color is set with the built-in function setImageBackgroundColor().

 The output can either be displayed on the server by using `echo`, or it can be

saved locally with `writeImage()`.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->setImageBackgroundColor('black');

$image->setImageAlphaChannel(100);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/newimage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 12

Image reflections are a type of image manipulation technique used to create mirror images

or symmetrical patterns. This effect is achieved by copying and flipping an image

horizontally or vertically, creating a mirrored version of the original.

In this chapter we will explore how to use the PHP Imagemagick library to create image

reflections with ease. We'll cover basic concepts such as reflection types, size adjustments,

and color manipulations to give you a comprehensive understanding of the process and

help you create beautiful reflective effects quickly and easily.

Image flipping

Flipping an image is the process of making a reflected duplication of that image

vertically. So, for flipping an image, we have a method ‘flipImage()’ in Imagemagick.
This function helps to display the vertical mirror image of the input.

Syntax

The syntax of this method is shown below –

bool Imagick::flipImage(void)

This function does not accept any parameters.

Example

In this example, you'll learn how to use the 'flipImage()' function in PHP. To get

started, create a new Imagick object and read the input image. Then, use the

flipImage() method to flip it vertically. You can either display the flipped image directly
on the server or save it to your system using writeImage().

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpg");

$image->flipImage();

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/flipImage.png");

?>

Assume that the following is the input image (image.jpg) in the program –

3. PHP Imagemagick - Image Reflections

PHP Image Magick

 13

Output

On executing the above program, it generates the following output –

Image flopping

Flopping an image is the process of making a reflected duplication of that image

horizontally. So, for flopping an image, we have a method ‘flopImage()’ in
Imagemagick. This function helps to display the horizontal mirror image of the input.

Syntax

The syntax of this method is shown below –

bool Imagick::flopImage(void)

This function does not accept any parameters.

Example

In this example, you'll learn how flop an image using the 'flopImage()' function in PHP.

To start, create a new Imagick object and read the input image. Next, use the

'flopImage()' function to flip it horizontally. The flipped image will return as output.

<?php

PHP Image Magick

 14

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpg");

$image->flopImage();

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/flopImage.png");

?>

Assume that the following is the input image (image.jpg) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 15

Image cropping involves cutting out portions of an image or reducing its size by trimming

away parts that are not essential. This allows you to focus on just the important elements

in the image while discarding any unnecessary elements.

Using ImageMagick for image cropping is a great way to quickly edit your images without

needing any special software or knowledge of complicated graphic design techniques.

In this chapter, you will be learning to crop the images using the inbuilt functions provided

by the ImageMagick library.

Image-cropping

Extracting a region from an image is called ‘cropping’. It is nothing but removing the

unwanted edges of an image or obtaining a particular part of an image. This can be done
in PHP using a method called ‘cropImage()’ in Imagemagick.

Syntax

The syntax of this method is shown below –

public Imagick::cropImage(int $width, int $height, int $x, int $y) : bool

Parameters

This method takes in 4 parameters which are width, height, x, and y.

 Width - width of the crop,

 Height - height of the crop,

 x - X-coordinate of the cropped region’s top left corner.

 y - Y-coordinate of the cropped region’s top left corner.

The output obtained will be the cropped image according to the measurements given as
the arguments in that method.

Example

In the following example an Imagick object is created and the input image is read.

Subsequently, using 'cropImage()' function, the image is cropped as per arguments

provided within the function. The output i.e., cropped image can either be directly

displayed on the server or saved to your system with any desired name and format
using the 'writeImage()' function.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpg");

$image->cropImage(800, 750, 200, 100);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/newimage.png");

4. PHP ImageMagick – Image Cropping

PHP Image Magick

 16

?>

Assume that the following is the input image (image.jpg) in the program –

Output

On executing the above program, it generates the following output –

Creating a cropped thumbnail

Thumbnail is a representation of the larger image in the form of a smaller image. It

intends to make it easier and faster to look at or manage a group of larger images.

ImageMagick helps us to create a cropped thumbnail by providing a method
‘cropThumbnailImage()’.

Syntax

The syntax of this method is shown below –

public Imagick::cropThumbnailImage(int $width, int $height, bool $legacy = fals

e): bool

PHP Image Magick

 17

This method helps to create a fixed-size thumbnail by first scaling the image up or down
and cropping a specified area from the center.

This method takes 2 parameters, width, and height. They specify the width and height of
the thumbnail respectively.

Example

In the below example, the imagick object is created. Then, the fixed size thumbnail is

obtained using the ‘cropThumbnailImage()’ function and output is obtained using
‘writeImage()’ function.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpg");

$image->cropThumbnailImage(100, 100);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/newimage.png");

?>

Assume that the following is the input image (image.jpg) in the program –

Output

On executing the above program, it generates the following output –

Chopping images

Sometimes, during the selection of images, the whole image is not needed. In those

situations where you want an extract of an image or only a particular region of the image,

PHP Image Magick

 18

the ‘chopImage()’ function helps us. This function helps us to remove a region of an

image and trims the image according to the user’s specifications.

Syntax

The syntax of this method is shown below –

public Imagick::chopImage (int $width, int $height,int $x,int $y): bool

This function takes 4 parameters namely,

 width - width is also an integer value that stores the width of the chopped area.

 height - Height’ is an integer value that stores the height of the chopped area

 x – x coordinate of the chopped area.

 Y – y coordinate of the chopped area.

Example

In the following example, you will learn how to use the 'chopImage()' function. First, an

Imagick object is created and given an image as input.

Then, 'chopImage()' is applied on the image with parameters such as width, height, x-

coordinate, and y-coordinate.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpeg");

$image->chopImage (400, 40, 2, 2);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/chopImage.png");

?>

Assume that the following is the input image (image.jpeg) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 19

PHP Image Magick

 20

Every picture that is displayed on a digital display has black or white, or colored

backgrounds. So, making a separation between the background and the photo is essential

to define the visual limits of the image.

This necessity of making separation is even more in black or white backgrounds. So, to

serve this purpose, borders must be added to photos. In this chapter, you will learn to add

borders to images in PHP using a few inbuilt functions of Imagemagick.

Adding 3D border

A 3D border can be added to an image using an inbuilt function ‘frameImage()’
provided by Imagemagick.

Syntax

The syntax of this method is shown below –

public Imagick::frameImage(mixed $matte_color, int $width, int $height, int

$inner_bevel, int $outer_bevel): bool

This method takes 5 parameters

 matte-color - It is a string representing matte color.

 width - represents the width of the border.

 height - represents the height of the border.

 inner_bevel - represents the width of inner bevel.

 outer_bevel - represents the width of outer bevel.

The output obtained is an image with a border frame with the specified measurements and

color.

Example

The following program shows how to use the Imagick library in PHP to create a new image

file. It creates an object of the Imagick class using an existing image, adds a frame around

it with specific parameters (in this case pink and 100x100 pixels with 10px border), then

writes the modified image as a PNG file.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpg");

$image->frameImage('pink', 100, 100, 10, 10);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/newimage.png");

?>

Assume that the following is the input image (image.jpg) in the program –

5. PHP ImageMagick – Image Bordering

PHP Image Magick

 21

Output

On executing the above program, it generates the following output –

Adding a normal border

Imagemagick has provided a method ‘borderImage()’ which adds a border to an image.

It takes an image as input and produces an image with a border, as output.

Syntax

The syntax of this method is shown below –

public Imagick::borderImage(mixed $bordercolor, int $width, int $height): bool

This function has 3 parameters which are border-color, width, and height.

 The bordercolor is an imagickpixel object or a string containing border color.

 The width and height are integer values holding the width and height of the

border.

Example

The following program shows how to use the Imagick library in PHP to create an image

with a 25px yellow border. It reads the image from the 'test/image.png' file and writes it

out as 'test/borderImage.png' with the added border.

<?php

PHP Image Magick

 22

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->borderImage('yellow', 25, 25);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/borderImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 23

In this chapter, you will be learning to resize images adaptively and scale the images for

certain dimensions using various inbuilt functions that are provided by Imagemagick.

While resizing an image using ImageMagick, you can achieve it in two different ways

scaling or, cropping. Scaling will result in a proportional increase or decrease in size while

cropping will cut off portions of the original image based on specific parameters set by the

user.

Resizing images adaptively

There are many situations where we want to shrink images slightly to a smaller ‘web size’.

For this, there is a method provided by Imagemagick which is ‘adaptiveResizeImage()’,

which helps to resize the image adaptively. This also avoids blurring across sharp coloring

changes.

Syntax

The syntax of this method is shown below –

public Imagick::adaptiveResizeImage(int $columns, int $rows,

bool $bestfit = false, bool $legacy = false): bool

The parameters of this method are columns, rows, and bestfit.

 columns specify the number of columns in the scaled image.

 rows represent the number of rows in the scaled image

 bestfit specifies whether to fit the image inside a bounding box.

Example

The following example is used to demonstrate how to implement this function in PHP.

Start by creating a new Imagick object and taking an input image. Then, apply the

'adaptiveResizeImage()' method on that input image. Finally, save the output image
as 'adaptiveResizeImage.png'.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpg");

$image->adaptiveResizeImage(2000, 1000);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/adaptiveResizeImage.png");

?>

Assume that the following is the input image (image.jpg) in the program –

6. PHP ImageMagick – Image Resizing

PHP Image Magick

 24

Output

On executing the above program, it generates the following output –

Scaling images to desired dimensions

For the images to fit into the websites, there must be some desired dimensions. Scaling

the images to those dimensions will either remove the unnecessary pixels or create or

add new pixel details. ImageMagick allows us to resize the images in PHP using the

method ‘resizeImage()’. It takes the image as input and resizes it according to the
desired dimensions and gives the output.

To ensure the images fit into websites, they must be scaled to specific dimensions. The

ImageMagick's 'resizeImage()' method allows us to do this in PHP, it takes an image

as input and resizes it according to the desired dimensions and returns the resultant

image.

Syntax

The syntax of this method is shown below –

public Imagick::resizeImage(int $columns, int $rows, int $filter, float $blur,

bool $bestfit=false, bool $legacy=false):bool

The parameters of the resizeImage() method are columns, rows, filter, blur, and
bestfit.

 columns and rows are integer values that specify the width and height of the

images respectively.

PHP Image Magick

 25

 filter is an integer value that refers to the list of filter constants like filter_point,

filter_box, filter_triangle, etc.

 The blur factor is the float value. If the blur factor is greater than 1, it is blurry

and if it is less than 1, it is sharp.
 bestfit is an optional fit parameter.

Example

Following is an example of to resize the image using PHP. In here we arw creating a new

Imagick object and an empty image (for input). Then, invokes the 'resizeImage()'

method on the image created. The output will be in PNG format and named
'resizeImage'.

<?php

$img=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpg");

$img->resizeImage(200, 300, null, null, null, null);

$img->writeImage($_SERVER['DOCUMENT_ROOT']."/test/newimage.png");

?>

Assume that the following is the input image (image.jpg) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 26

The combination of two or more images to create a new one is called composite

photography. And the combined photo is called a composite image. Combining visual

elements from separate sources into a single image is often done to create the illusion

that all those elements are parts of the same image.

Doing this manually becomes a very complex task and it takes hours. To make this process

easy and fast, Imagemagick has provided a method named ‘compositeImage()’ which

takes two images as input and provides the combined image as output.

Syntax

The syntax of this method is shown below –

public Imagick::compositeImage(Imagick $composite_object, int $composite,

int $x, int $y, int $channel = Imagick::CHANNEL_DEFAULT): bool

The parameters of this method are composite_object, x, y, and channel.

‘Composite_object’ is an Imagick object which holds the composite image.

‘x’ is the column offset of the composited image and ‘y’ is the row offset of the composited

image. ‘Channel’ provides any channel constant that is valid for your channel mode.

Example

This example is a PHP code snippet which implements ‘compositeImage()’ function.

Firstly, two imagick objects are created and two images are taken as inputs. Both the

images are composited with the help of ‘compositeImage()’ function, and the output

image is in the format ‘compositeImage.png’.

<?php

$image1=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image1.jpg");

$image2=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image2.jpg");

$image1->setImageVirtualPixelMethod(Imagick::VIRTUALPIXELMETHOD_TRANSPARENT);

$image1->setImageArtifact('compose:args', "1,0,-0.5,0.5");

$image1->compositeImage($image2, Imagick::COMPOSITE_MATHEMATICS, 0, 0);

$image1->writeImage($_SERVER['DOCUMENT_ROOT']."/test/compositeImage.png");

?>

Assume that the following is the input image (image1.jpg) in the program –

7. PHP Imagemagick - Composite Images

https://www.php.net/manual/en/class.imagick.php

PHP Image Magick

 27

Assume that the following is the input image (image2.jpg) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 28

Different types of moods can be conveyed in images with the help of contrast. The term

‘contrast’ refers to the amount of color or grayscale differentiation. Images with higher

contrast levels generally display a greater degree of color or grayscale variation than those

of lower contrast. In this chapter, you will be learning about changing and adjusting the

contrast and brightness.

Changing the contrast

In this section, you will be learning about the process of changing the contrast. This can

be done using a method called ‘contrastImage()’ which is provided by Imagemagick. It

helps to enhance the differences between lighter and darker elements of the image.

Syntax

The syntax of this method is shown below –

public Imagick::contrastImage(bool $sharpen): bool

This method contains a single parameter which is ‘sharpen’. It is a boolean value that

specifies the sharpen value. This method takes an image as an input and gives out the

image after changing its contrast as output.

Example

In the below example, new imagick object is created and the input image is taken. Then,

the contrastImage() function is applied on that image. Finally, the output image is

obtained in the format ‘contrastImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpeg");

$image->contrastImage(true);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/contrastImage.png");

?>

Assume that the following is the input image (image.jpeg) in the program –

8. PHP Imagemagick - Contrast & Brightness

PHP Image Magick

 29

Output

On executing the above program, it generates the following output –

Changing the brightness

ImageMagick provided a method called ‘brightnessContrastImage()’ which changes

the brightness and contrast of an image. It converts the brightness and contrast
parameters into slope and intercept and calls a polynomial function to apply to the image.

Syntax

The syntax of this method is shown below –

Public Imagick::brightnessContrastImage(float $brightness, float $contrast, int

$channel=Imagick::CHANNEL_DEFAULT):bool

This method contains 3 parameters which are brightness, contrast, and channel.

‘Brightness’ is used to store the value of brightness, ‘contrast’ is used to store the value

of the contrast of the image, and ‘channel’ is used to store the value of the channel. The

output obtained is an image with added brightness and contrast.

Example

In the below example, a new imagick object is created and the input image is taken. Then,

the ‘brightnessContrastImage()’ function with parameters (brightness=15,

PHP Image Magick

 30

contrast=20) is applied on that image. Finally, the output image is obtained in the format

‘brightnessContrastImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image5.jpeg");

$image->brightnessContrastImage(15,50);

$image-

>writeImage($_SERVER['DOCUMENT_ROOT']."/test/brightnessContrastImage.png");

?>

Assume that the following is the input image (image5.jpeg) in the program –

Output

On executing the above program, it generates the following output –

Enhance the contrast

Enhancement is the process of improving quality of an image. To enhance the contrast,

Imagemagick has provided a method ‘contrastStretchImage()’ which enhances the

contrast of the color image by adjusting the pixels' color to span the entire range of colors
available.

Syntax

The syntax of this method is shown below –

PHP Image Magick

 31

public Imagick::contrastStretchImage(float $black_point, float $white_point, in

t $channel = Imagick::CHANNEL_DEFAULT): bool

This method has three parameters which are black_point, white_point, and channel.

‘Black_point’ specifies the black point, ‘white_point’ specifies the white point and’ channel’

provides any channel constant that is valid for your channel mode.

Example

In the below example, a new Imagick object is created and the input image is taken.

Then, the ‘contrastStretchImage()’ function with parameters(black_point=1000,

white_point=5000) is applied on that image. Finally, the output image is obtained in the

format ‘contrastStretchImage.png’.

This method has three parameters which are black_point, white_point, and channel.

‘Black_point’ specifies the black point, ‘white_point’ specifies the white point and’ channel’

provides any channel constant that is valid for your channel mode.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpeg");

$image->contrastStretchImage(1000, 5000);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/contrastStretchImage.png");

?>

Assume that the following is the input image (image.jpeg) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 32

PHP Image Magick

 33

Enhancing Images

Image enhancement is the process of improving the visual appearance or quality of an

image. This can be achieved through a variety of techniques, such as adjusting brightness

and contrast, color balancing, sharpening or blurring edges, changing resolution and noise

removal.

There is a function provided by Imagemagick which is ‘enhanceImage()’. It takes the

image as input and enhances the image by improving its quality and produces the
enhanced image as output.

Syntax

The syntax of this method is shown below –

public Imagick::enhanceImage(): bool

This function has no parameters.

Example

This example represents the PHP code to implement the function ‘enhanceImage()’. The

new imagick is created at first, then ‘enhanceImage()’, function is applied and output is
obtained in the format ‘enhanceImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpeg");

$image->enhanceImage();

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/enhanceImage.png");

?>

Assume that the following is the input image (image.jpg) in the program –

9. PHP Imagemagick - Enhancing & Equalizing

PHP Image Magick

 34

Output

On executing the above program, it generates the following output –

Equalizing images

Equalizing images is a process of adjusting the contrast and brightness in an image to

make it look more balanced. Equalizing can help bring out details in shadows and
highlights, as well as improve color accuracy and reduce noise.

In this process, the contrast can either be increased or decreased based on the histogram

equalization which is a computer image processing technique. In this section, you will be

learning to equalize an image using the ‘equalizeImage()’ function provided by
Imagemagick.

Syntax

The syntax of this method is shown below –

public Imagick::equalizeImage(): bool

PHP Image Magick

 35

This function has no parameters. It takes an image as input and produces the equalized
image as output.

Example

This example shows the implementation of ‘equalizeImage()’ function in PHP. The input

image is read after creation of imagick object and then ‘equalizeImage()’ function is

applied on that input image. The final output image is obtained in the format
‘equalizeImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpeg");

$image->equalizeImage();

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/equalizeImage.png");

?>

Assume that the following is the input image (image.jpeg) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 36

PHP Image Magick

 37

Sharpening Imaging

To give a sharper appearance to images, Imagemagick provides an inbuilt function

‘adaptiveSharpenImage()’ which sharpens the images adaptively. It takes an image as
input and produces the sharpened image as output.

This method uses algorithms to detect areas in an image where sharpening should be

applied, and adjusts the amount of sharpening accordingly. This allows for more natural-

looking results than uniform sharpening techniques without sacrificing quality or
introducing artifacts into the image.

Syntax

The syntax of this method is shown below –

public Imagick::adaptiveSharpenImage(float $radius, float $sigma, int $channel

= Imagick::CHANNEL_DEFAULT): bool

This function consists of three parameters which are radius, sigma, and channel.

 Radius is a float value that specifies the radius of the Gaussian, in pixels, not

counting the center pixel.

 Sigma is a float value that specifies the standard deviation of the Gaussian, in

pixels.

 Channel provides any channel constant that is valid for your channel mode.

Example

To have a clear understanding on how to implement this function, look at the below

example. This code creates an imagick object and inputs the image. Then,

‘adaptiveSharpenImage()’ function is applied with the required parameters (radius=19,

sigma=15). The output image is obtained in the form ‘adaptiveSharpenImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->adaptiveSharpenImage(19,15);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/adaptiveSharpenImage.png");

?>

Assume that the following is the input image (image.png) in the program –

10. PHP Imagemagick - Sharpening & Blurring

PHP Image Magick

 38

 Output

On executing the above program, it generates the following output –

Blurring images

Blurring an image makes the color transition smooth. By blurring, the rapid changes in the

intensity of pixels are averaged. In this chapter, you will be learning about different ways
of blurring images with the help of the inbuilt functions provided by Imagemagick.

PHP Image magick library provides a range of powerful functions using which we can

perform a variety of operations including blurring, resizing, cropping, and more. With PHP
Imagemagick you can easily blur your images with just a few lines of code.

You can also adjust the intensity of the blur as well as several other settings to achieve

the desired effect. Whether you're looking for subtle or dramatic changes in your photos,
PHP Imagemagick has everything you need to create stunning results!

Adding blur filter

To add a blur filter on an image, Imagemagick provided a method named ‘blurImage()’.

It takes an image as input and generates/returns the blurred image.

Syntax

The syntax of this method is shown below –

public Imagick::blurImage(float $radius, float $sigma, int $channel = ?): bool

This function has 3 parameters: radius, sigma, and channel.

PHP Image Magick

 39

 Radius is a float value that specifies the radius that needs to be blurred.

 Sigma is a float value that specifies the standard deviation.

 channel specifies the channel-type constant. When channel is not specified, all
channels are blurred.

Example

In the below example, a new imagick object is created and an image is taken as input.

Then, ‘blurImage()’ function is applied to blur the image. The radius and sigma are the

parameters specified inside the function (radius=25, sigma=5). The blurred image is
obtained as output in the form ‘blurImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->blurImage(25, 5);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/blurImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

Applying blur by a certain angle

The 'rotationalImageBlur()' function of Imagemagick can be used for image

manipulation, allowing users to apply blurring effects on an image at any angle. It

PHP Image Magick

 40

accepts the input image and produces a blurred version of the same with the desired
degree of blurriness.

Syntax

The syntax of this method is shown below –

public Imagick::rotationalBlurImage(float $angle, int $channel =Imagick::CHANNE

L_DEFAULT):bool

This function contains two parameters which are angle and channel.

1. Angle is a float value that is used to store the angle.

2. channel is a constant that is valid for your channel mode.

Example

In the below PHP code example, a new imagick object is created and image is taken as

input. Then, ‘rotationalBlurImage()’ function is applied to blur the image on a certain
angle (15). The blurred image is obtained as output in the form ‘rotationalBlurImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->rotationalBlurImage (15);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/rotationalBlurImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 41

Simulating motion blur

The blur that is seen in moving objects in an image is called ‘motion blur’. To simulate

motion blur, Imagemagick provided an inbuilt function ‘motionBlurImage()’. It takes an
image as input and produces the motion-blurred image as output.

Syntax

The syntax of this method is shown below –

public Imagick::motionBlurImage(float $radius, float $sigma, float $angle,

int $channel =Imagick::CHANNEL_DEFAULT): bool

This function contains 4 parameters which are radius, sigma, angle, and channel.

1. Radius is a float value that specifies the radius of the Gaussian (in pixels) excluding

the center pixel.

2. sigma is a float value that specifies the standard deviation of the Gaussian (in

pixels).

3. angle is also a float value which specifies the angle of the blurring motion.
4. Channel is a constant that is valid for your channel mode.

Example

In the example below, a new Imagick object is created and an image is taken as input.

The 'motionBlurImage()' function is then applied to blur the image with radius (20), sigma

(20) and angle (45) as parameters. As a result, a blurred version of the original image can
be obtained in the form of 'motionBlurImage.png'.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->motionBlurImage(20, 20, 45);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/motionBlurImage.png");

?>

PHP Image Magick

 42

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 43

In this chapter, you will be learning to tile a texture image repeatedly. Tiling a texture

image is the process of creating a pattern in which the texture image is repeated which is
in the form of tiles.

With ImageMagick, you can easily tile an image into equal-sized pieces. You can also

adjust the size and orientation of each piece, allowing you to customize your tiled image

however you want. In this tutorial, we'll explain how to use PHP ImageMagick's Image tile
to achieve perfect results in creating stunningly beautiful tiled images!

Syntax

The syntax of this method is shown below –

Imagick::textureImage(Imagick $texture_wand): Imagick

This function consists of one parameter

 ‘texture_wand’. It is an Imagick object that is used as a texture image.

The below example is a program to tile the images. This program has a few additional are
used other than ‘textureImage()’.

 New image creation - It involves the creation of a new image using the function

‘newImage()’ which takes the column size and row size as arguments. Hence,

an image with those measurements is created.

 Scaling the image - A function ‘scaleImage()’ is used to scale the image to a

particular dimension and the image is shortened with those dimensions and hence

can be tiled on the new image that we created.

This function takes the image as input and the output obtained is the image that
contains the pattern of tiles of texture images.

Example

Below example shows the implementation of the ‘textureImage()’ function. Here, a new
Imagick object is created with the specified measurements and color as parameters.

 The image format is also set. Then, an image is taken as input by creating a new

Imagick object.

 Now, the image is scaled to some specific dimension using the ‘scaleImage()’

function.

 The scaled image is continuously tiled on the new image that is created in the

beginning using the ‘textureImage()’ function.

 The final output is obtained in the form ‘textureImage.png’.

<?php

$img=new Imagick();

$img->newImage(940, 670, new ImagickPixel('red'));

11. PHP ImageMagick - Image Tiling

https://www.php.net/manual/en/class.imagick.php
https://www.php.net/manual/en/class.imagick.php

PHP Image Magick

 44

$img->setImageFormat("jpg");

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpeg");

$image->scaleimage($image->getimagewidth() / 8, $image->getimageheight() / 8);

$img=$img->textureImage($image);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/textureImage.png");

?>

Assume that the following is the input image (image.jpeg) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 45

In this chapter, you will be learning to create different types of threshold images using a

few inbuilt functions of the ImageMagick library.

PHP Imagemagick offers a wide range of features, including image thresholding. Image

thresholding allows you to adjust the contrast of an image by setting a specific limit or

'threshold' that determines how light or dark pixels in the image will appear.

This makes it possible to create high-contrast images with sharp edges between objects

and backgrounds, as well as smooth gradients without harsh transitions. By using PHP

Imagemagick's image threshold feature, users can easily improve their digital photos and

graphics.

Creating a black threshold image

The 'blackThresholdImage()' function is part of the Imagemagick library. It can be

used to quickly and easily modify an image by applying a threshold value that will be
compared against all pixels in the input image.

Any pixel with a value below the specified threshold will be turned to black, while any pixel
above the threshold will remain unchanged.

Syntax

The syntax of this method is shown below –

public Imagick::blackThresholdImage(mixed $threshold): bool

This function has only one parameter which is ‘threshold’. This specifies the threshold
value with which all the pixels of the image are compared.

Example

This example shows the use of the 'blackThresholdImage()' function. An Imagick object

is created and an image is taken as input. The 'blackThresholdImage()' function is

applied with a threshold value as its parameter, resulting in an output image saved as

'blackThresholdImage.png'.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->blackThresholdImage('rgb(1, 255, 141)');

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/blackThresholdImage.png");

?>

Assume that the following is the input image (image.png) in the program –

12. PHP Imagemagick - Image Threshold

https://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.mixed

PHP Image Magick

 46

Output

On executing the above program, it generates the following output –

Creating a white threshold image

The 'whiteThresholdImage()' function enables you to set a specified threshold value,

and then apply it against all pixels of an input image. Those values that are below the

threshold will be converted to white, while any value that is above the threshold remains

unchanged.

This can be highly beneficial for tasks such as image segmentation or noise removal,
allowing you to quickly identify portions of an image that need further attention.

Syntax

The syntax of this method is shown below –

public Imagick::whiteThresholdImage(mixed $threshold): bool

It has only one parameter - ‘threshold’. This specifies the threshold value with which all
the pixels of the image are compared.

Example

https://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.mixed

PHP Image Magick

 47

The following example demonstrates how to use the 'whiteThresholdImage' function.

In here, an Imagick object is created and an image is taken as input. The

'whiteThresholdImage' function is then applied with a threshold value as its parameter.
The resultant image is saved as 'whiteThresholdImage.png'.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/imagee.png");

$image->whiteThresholdImage('rgb(1, 255, 141)');

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/whiteThresholdImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 48

In this chapter, you will be learning to modify and replace different colors in an image

using a few inbuilt functions provided by Imagemagick.

With Imagemagick, you can adjust brightness, contrast, hue, saturation and other color

parameters. You can even create complex effects such as merging multiple layers or

adding special filters to your photos. This tutorial will provide an overview of how PHP

Imagemagick works and how it can be used to modify the colors in digital images quickly

and easily.

Colorize image

Imagemagick's 'colorizeImage()' function is an efficient way to change the color of any

part of an image. This function works by blending the chosen fill color with each pixel in

the picture, creating a seamless transition between colors and producing professional-

looking results.

 The process eliminates much of the manual labor associated with changing colors

on an image, such as selecting specific areas or hand-painting sections.

 Additionally, it saves time since it allows users to make these changes quickly and

easily without sacrificing quality.

Syntax

The syntax of this method is shown below –

public Imagick::colorizeImage(mixed $colorize, mixed $opacity, bool $legacy = f

alse): bool

This function takes 2 parameters: colorize and opacity.

 Colorize is an Imagick object or a string containing the colorize color,

 opacity is an Imagick object or a float value containing the opacity value.

If opacity is 1.0, it is fully opaque and 0.0 means fully transparent.

Example

In this example, you will be able to clearly understand the use of ‘colorizeImage()’. An

imagick object is created first and the input image is taken. Then, ‘colorizeImage()’

function is applied taking the required parameters (colorize=red and opacity=1). The

image after blending colors is displayed an output using ‘writeImage()’ function.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->colorizeImage('red', 1, true);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/colorizeImage.png");

13. PHP Imagemagick - Modifying Colors

https://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.mixed
https://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.mixed

PHP Image Magick

 49

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

Creating a blue shift image

When there is a need to represent the images in moonlight or during night time you can

do so using the method ‘blueShiftImage()’. This method takes an image as a parameter

and mutes the colors of the image to simulate the scene nighttime in the moonlight and
produces the output image.

 It may also involve adjusting brightness levels, saturation, contrast, and other

features to ensure the end result is as close as possible to what one might expect

when viewing these images in natural light conditions.

 Additionally, this technique can be used for creative purposes; by manipulating

color values, interesting effects can be achieved with photos taken during twilight
hours or even indoors with artificial lighting.

PHP Image Magick

 50

Syntax

The syntax of this method is shown below –

public Imagick::blueShiftImage(float $factor = 1.5): bool

This function takes a factor value as its parameter. It specifies the value to mute the colors
of the image.

Example

This example shows the implementation of ‘blueShiftImage()’ function. A new imagick

object is created and image is taken as input. Now, ‘blueShiftImage()’ function is

applied with factor as its parameter and the output image obtained is in the form
‘blueShiftImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->blueShiftImage(2);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/blueShiftImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 51

Replacing colors in images

In this section, you will be learning to replace colors in an image. There is an inbuilt

function called ‘clutImage()’ in Imagemagick to perform this task. With the help of this

function, all the colors in an image are replaced by the specific color that the user needs.

This function takes an image as input and produces the image after replacing the colors

as its output.

'clutImage()' function is versatile and can be used to achieve a variety of different

effects. For example, you could use it to create a monochromatic image by replacing all

colors in the original image with one single color.

You could also use it to add vibrancy and contrast to an existing photo by

swapping out duller tones for brighter ones. Syntax

The syntax of this method is shown below –

public Imagick::clutImage(Imagick $lookup_table, int $channel =Imagick::CHANNEL

_DEFAULT): bool

This function takes in 2 parameters.

 lookup_table which is an Imagick object containing the color lookup table.

 channel which is a Channeltype constant.

Example

In the following example, an Imagick object is created with an image as its input. A

second Imagick object is then created and a new image is generated which selects 'violet'

from the lookup table. The ̀ clutImage()` method is used to replace colors, where 'violet'

has been specified and no ChannelType constant has been declared; thus, the default

channel will be utilized.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/imagee.png");

$clut = new Imagick();

$clut->newImage(1, 1, new ImagickPixel('violet'));

https://www.php.net/manual/en/class.imagick.php

PHP Image Magick

 52

$image->clutImage($clut);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/clutImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

Negation of images

Negating the colors in images implies the reversing or inverting of the colors. For example,

assume an image containing white and black colors. After negating the colors, white

changes to black and black changes to white.

The 'negateImage()' function is used to negate/inverse the colors in PHP ImageMagick,

You might also use this effect to create high-contrast images by changing light tones into

dark ones or deep hues into bright ones. Additionally, it is possible to achieve more subtle

color shifts in your images by applying partial color negation; this means that only certain

parts of the image are affected while others remain untouched.

Syntax

PHP Image Magick

 53

The syntax of this method is shown below –

public Imagick::negateImage(bool $gray, int $channel =Imagick::CHANNEL_DEFAULT)

: bool

This function takes in 2 parameters: gray and channel.

 Gray is a boolean value that decides whether to negate grayscale pixels within the

image.

 Channel provides any channel constant that is valid for your channel mode.

To apply more than one channel, you must combine channelType constants using bitwise

operators.

Example

In the below example, you can clearly understand the implementation of

‘negateImage()’ function. Firstly, you create a new imagick object and input an image.

Then apply ‘negateImage()’ function on the image and display the output image with

the help of ’writeImage()’ function.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->negateImage('true');

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/negateImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 54

PHP Image Magick

 55

Creating a 3D effect

A picture that appears to be having height, width, and depth is called a 3-dimensional(3D)
picture. 3D images provide a realistic replica of the object to the users.

To create this effect directly on the server, Imagemagick offers an inbuilt function called

'shadeImage()'. This is handy and it is capable of transforming standard 2D images into

high-quality 3D renderings with ease.

Syntax

The syntax of this method is shown below –

public Imagick::shadeImage(bool $gray, float $azimuth, float $elevation): bool

This function takes 3 parameters: gray, azimuth, and elevation.

 Gray is a Boolean value that is used to shade the intensity of each pixel.

 Azimuth’ and ‘elevation’ are float values that define the light source

directions off the x-axis and above the z-axis respectively.

For creating a 3D effect, the amount of light and the direction of light is mainly considered.

This function the image as input and produces the image with a 3D effect as output.

Example

This example shows the use of the 'shadeImage()' function In here, an Imagick object

is created and an image is passed as input. The 'shadeImage()' function is then called
with gray value, azimuth value, and elevation supplied as parameters.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->shadeImage(true, 50, 30);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/shadeImage.png");

?>

Assume that the following is the input image (image.png) in the program –

14. PHP Imagemagick - Different Effects

PHP Image Magick

 56

Output

On executing the above program, it generates the following output –

Creating a solarizing Effect

The effect that is seen when the photographic film is extremely overexposed is called as

the solarize effect. To create that effect in PHP, there is an inbuilt function
‘solarizeImage()’ provided by Imagemagick.

This effect results in an image with reversed tones, where the highlights

become dark and vice versa. Syntax

The syntax of this method is shown below –

public Imagick::solarizeImage(int $threshold): bool

This function takes ‘threshold’ as a parameter. It is an integer value that is used to
measure the extent of the solarizing effect.

Example

This example shows the implementation of ‘solarizeImage()’ function. A new imagick

object is created and image is taken as input. Now, ‘solarizeImage()’ function is applied

with a threshold value as its parameter and the output image obtained is in the form

‘solarizeImage.png’.

<?php

PHP Image Magick

 57

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/imagee.png");

$image->solarizeImage(0.3);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/solarizeImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

Creating a Wave Filter Effect

Imagemagick has provided an inbuilt function called ‘waveImage()’ which helps in

simulating a wave filter on an image. It takes an image as input and the output obtained

is the image with a wave filter.

Syntax

The syntax of this method is shown below –

public Imagick::waveImage(float $amplitude, float $length): bool

PHP Image Magick

 58

This function has two parameters: amplitude and length.

 Amplitude specifies the amplitude of the wave.

 length specifies the length of the wave.

Example

This is an example which shows the implementation of ‘waveImage()’ function. At first,

a new imagick object is created and an image is taken as input. Then, ‘waveImage()’

function is applied on that image. The required output is obtained in the form of

‘waveImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->waveImage(2, 4);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/waveImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 59

Creating a Swirl Effect

In this chapter, you will be learning to swirl an image. Generally, swirling means to move

quickly with a twisting or a circular movement. The image that contains this type of effect

is called a swirled image. Creating a swirl image manually is difficult. But, to make this

easier, Imagemagick has provided an inbuilt function ‘swirlImage()’ which swirls the

pixels about the center of the image.

Syntax

The syntax of this method is shown below –

Imagick::swirlImage(float $degrees): bool

This function takes in a single parameter: degrees. ‘Degrees’ is a float value that indicates

the sweep of the arc through which each pixel is moved. By this, you get a more dramatic

effect as the degrees move from 1 to 360.

Example

In the below example, you first create a new imagick object and input an image. Then,

‘swirlImage()’ function is applied by specifying the degrees(degrees=200). And finally,

that swirled image is obtained as output.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/imagee.png");

$image->swirlImage(200);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/swirlImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 60

PHP Image Magick

 61

In this chapter, you will be learning to secure the images so that only the sender and the
intended receiver get to see the images on the web pages.

PHP Imagemagick provides image processing and manipulation, allowing you to protect

your images from theft or unauthorized use. Now, we will discuss the features of PHP
Imagemagick and how they can help you keep your images safe.

Enciphering an image

The inbuilt function named ‘encipherImage()’ in Imagemagick, helps in enciphering the

images. Converting the plain pixels image to the enciphered pixels is the process that

happens in this function. The enciphered image can be viewed only by the viewer who can
decipher the image using the key is given (‘passphrase’).

Syntax

The syntax of this method is shown below –

public Imagick::encipherImage(string $passphrase): bool

This function takes one parameter ‘passphrase’ which acts as a key to encrypt and decrypt

images. It takes an image as input and enciphers the image using the passphrase and
produces the enciphered image as output.

Example

In the below example, the implementation of ‘encipherImage()’ function is shown.

Firstly, a new imagick object must be created and an image is taken as input. ‘Passphrase’

is defined which is a string that is passed as a parameter. Then, ‘encipherImage()’

function is applied with the help of the passphrase and the enciphered image is obtained
as output.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpeg");

$passphrase="Tutorials Point";

$image->encipherImage($passphrase);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/encipherImage.png");

?>

Assume that the following is the input image (image.jpeg) in the program –

15. PHP Imagemagick - Securing the Images

PHP Image Magick

 62

Output

On executing the above program, it generates the following output –

Deciphering the image

Imagemagick has provided an inbuilt function ‘decipherImage()’ which helps to decipher

the image. The process of converting the encrypted image to a plain image is called

deciphering an image. This function takes the enciphered image as input, converts that

image to a plain image using the passphrase, and produces the plain image as output.

Syntax

The syntax of this method is shown below –

public Imagick::decipherImage(string $passphrase): bool

This function takes the ‘passphrase’ as a parameter. It helps to decipher the image.

Example

The following example shows how to implement the 'decipherImage()' function. To

begin, create a new Imagick object and pass an image as input. You will also need to

define a passphrase string which is passed as a parameter. Finally, use the

'decipherImage()' function with your passphrase to obtain a deciphered image as
output.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/encipherImage.png");

PHP Image Magick

 63

$passphrase="Tutorials Point";

$image->decipherImage($passphrase);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/decipherImage.png");

?>

Assume that the following is the input image (encipherImage.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 64

In this chapter, you will be learning to simulate different types of sketches using a few

inbuilt functions provided by Imagemagick.

Simulating a charcoal drawing

ImageMagick provided a method called ‘charcoalImage()’ which produces the charcoal
drawing of the input image.

Syntax

The syntax of this method is shown below –

public Imagick::charcoalImage(float $radius, float $sigma): bool

This function takes 2 parameters: radius and sigma.

 Radius is a float value that specifies the radius of the Gaussian (in pixels), not

counting the center pixel.

 Sigma is also a float value that specifies the standard deviation of the Gaussian,
in pixels.

Example

This is an example which shows the implementation of ‘charcoalImage()’ function. At

first, a new imagick object is created and an image is taken as input. Then,

‘charcoalImage()’ function is applied on that image. The required output is obtained in
the form of ‘charcoalImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->charcoalImage(2, 2);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/charcoalImage.png");

?>

Assume that the following is the input image (image.png) in the program –

16. PHP Imagemagick - Simulation of Sketches

PHP Image Magick

 65

Output

On executing the above program, it generates the following output –

Simulating a pencil sketch

There is an inbuilt function called ‘sketchImage()’ provided by Imagemagick which

produces the pencil sketch of the input image.

Syntax

The syntax of this method is shown below –

public Imagick::sketchImage(float $radius, float $sigma, float $angle): bool

This function consists of 3 parameters: radius, sigma, and angle. These are float values.

‘Radius’ specifies the radius of the Gaussian (in pixels), ‘sigma’ specifies the standard

deviation of the Gaussian (in pixels) and ‘angle’ specifies the angle by which the effect
must be applied and specifies the angle of the blurring motion.

Example

This is an example which shows the implementation of ‘sketchImage()’ function. At first,

a new imagick object is created and an image is taken as input. Then, ‘sketchImage()’

PHP Image Magick

 66

function is applied on that image. The required output is obtained in the form of
‘sketchImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->sketchImage(11, 11, 30);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/sketchImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

Simulating an oil painting

Oil painting is a type of painting produced using oil-based paints. Without using oil paints

in real, this oil painting can be simulated using an inbuilt function ‘oilPaintImage()’ of

Imagemagick in PHP.

PHP Image Magick

 67

Syntax

The syntax of this method is shown below –

public Imagick::oilPaintImage(float $radius): bool

This function contains only one parameter which is ‘radius’ which is a float value. It

specifies the radius of the circular neighborhood. This function takes an image as input

and applies a special effect filter that simulates an oil painting and produces that as

output.

Example

This is an example which shows the implementation of ‘oilPaintImage()’ function. At

first, a new imagick object is created and an image is taken as input. Then,

‘oilPaintImage()’ function is applied on that image. The required output is obtained in

the form of ‘oilPaintImage.png’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->oilPaintImage(2);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/oilPaintImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 68

PHP Image Magick

 69

In this chapter, you will explore how to use Imagemagick's built-in functions to edit an

image. You'll learn how to create a faded and rounded look on the edges of your image,

wrap it in a parallelogram shape, and even simulate a polaroid effect.

Vignette image

The word ‘vignette’ means a small photograph or image which has a faded appearance

with its background and doesn’t have a definite border. Having this effect highlights certain

aspects of the image. So, to get images in this filter, Imagemagick provided an inbuilt

function ‘vignetteImage()’. This function takes an image as input, applies a vignette

filter, and obtained image has its borders blurred.

Syntax

The syntax of this method is shown below –

public Imagick::vignetteImage(float $blackPoint, float $whitePoint, int $x,

int $y): bool

This function has 4 parameters: blackpoint, whitepoint, x, and y. ‘Blackpoint’ and

‘whitepoint’ are float values. ‘x’ is an integer value that specifies the ‘x’ offset of the ellipse

and ‘y’ is an integer value that specifies the ‘y’ offset of the ellipse.

Example

To have a better understanding of ‘vignetteImage()’ function, look at the below

example. An imagick object is created at first and an image is taken as input. Then,

‘vignetteImage’ function is applied with all the parameters specified (blackpoint=30,

whitepoint=10, x=40, y=20). Finally, the output is obtained using ‘writeImage()’

function.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->vignetteImage(30, 10, 40, 20);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/vignetteImage.png");

?>

Assume that the following is the input image (image.png) in the program –

17. PHP ImageMagick – Editing the Appearance

PHP Image Magick

 70

Output

On executing the above program, it generates the following output –

Rounding corners

There is a basic belief that rounded corners are easier on the eyes. That is, they are

suitable for the natural movement of the head and eyes respectively. Rounding image

corners can also make the image look more organized and neater.

To round the corners of an image, there are an inbuilt function ‘roundCorners()’ provided

by Imagemagick. This function takes an image as input, rounds the corners, and produces

that image as output.

Syntax

The syntax of this method is shown below –

public Imagick::roundCorners(

 float $x_rounding,

 float $y_rounding,

 float $stroke_width =10,

 float $displace =5,

PHP Image Magick

 71

 float $size_correction =-6

): bool

This function has 5 parameters: x_rounding, y_rounding, strike_width, displace, and

size_correction. ‘x_rounding’ and ‘y_rounding’ are float values and they control the

amount of rounding. ‘stroke_width’, ‘displace’, and ‘size-correction’ are also float values

which are used to fine-tune the rounding process.

Example

From this example, you will be able to clearly understand the usage of this function. The

image is taken as input at first by creating a new Imagick object. ‘roundCorners()’

function is applied to that image with the help of the parameters specified

(x_rounding=20, y_rounding=20, stroke-width=5, displace=5, size-correction=-10).

Then, the output image is obtained using the function ‘writeImage()’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/imagee.png");

$image->roundCorners(20, 20, 5, 5, -10);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/roundCornerImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 72

Polaroid image

In this chapter, you will be learning to simulate the polaroid picture. A polaroid picture is

a picture that is taken by a polaroid camera. It is a type of camera that takes a picture

and prints it after a few seconds. It is a type of instant print and has a special type of film

holder. For simulating a polaroid image, Imagemagick has provided an inbuilt function

‘polaroidImage()’.

Syntax

The syntax of this method is shown below –

public Imagick::polaroidImage(ImagickDraw $properties, float $angle): bool

This function takes in 2 parameters: properties and angle. ‘Properties’ specifies the

polaroid properties and ‘angle’ specifies the polaroid angle in float value.

Example

In this example, you create a new imagick object and takes an image as input. Then, apply

‘polaroidImage()’ function on that image by specifying the parameters. The polaroid

image is obtained as output.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/imagee.png");

$image->polaroidImage(new ImagickDraw(), 30);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/polaroidImage.png");

?>

Assume that the following is the input image (image.png) in the program –

https://www.php.net/manual/en/class.imagickdraw.php

PHP Image Magick

 73

Output

On executing the above program, it generates the following output –

Creation of parallelogram

In this section, you will be learning about the function ‘shearImage()’. It is an inbuilt

function provided by Imagemagick. The functionality of this is to create a parallelogram.

This function takes an image as input and shears the image on the X and Y axis to create

a parallelogram and adds a background color.

Syntax

The syntax of this method is shown below –

public Imagick::shearImage(mixed $background, float $x_shear, float $y_shear):

bool

https://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.mixed

PHP Image Magick

 74

This function takes in 3 parameters: background, x_shear, and y_shear. ‘Background’

specifies the background color, ‘x_shear’ specifies the number of degrees to shear on the

X-axis, and ‘y_shear’ specifies the number of degrees to shear on the Y-axis.

Example

In the below example, the image is taken as input, and ‘shearImage ()’ function is

applied on that image. It takes in 3 parameters (background color= rgb (100, 200, 150),

x_shear=10 and y_shear=10). The obtained output is displayed using the function

‘writeImage ()’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->shearImage('rgb(100, 200, 150)', 10, 10);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/shearImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 75

In this chapter, you will be learning to rotate and roll images using the inbuilt functions of

Imagemagick.

Rotating an image

Imagemagick has provided an inbuilt function ‘rotateImage()’ which is used to rotate

the images according to the angle specified. This function takes an image as input, applied

this function, and rotates the image and the rotated image is obtained as output.

Syntax

The syntax of this method is shown below –

public Imagick::rotateImage(mixed $background, float $degrees): bool

This function has 2 parameters: background and degrees. ‘Background’ specifies the

background color and ‘degrees’ is a float value that specifies the rotation angle, in degrees.

The image is rotated clockwise at the specified angle.

Example

In the below example, a new imagick object is created at first and an image is taken as

input. ‘rotateImage()’ function is applied on that image and the image is rotated to that

specified angle. The rotated image is obtained as output with the help of ‘writeImage()’

function.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->rotateImage('black', 40);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/rotateImage.png");

?>

Assume that the following is the input image (image.png) in the program –

18. PHP ImageMagick - Rotation and Rolling

https://www.php.net/manual/en/language.types.declarations.php#language.types.declarations.mixed

PHP Image Magick

 76

Output

On executing the above program, it generates the following output –

Rolling an image

Did you ever observe the process of rolling something? That thing that you are rolling is

moved by revolving or turning it over and over. Rolling an image also means the same. It

is nothing but offsetting an image.

For this purpose, ImageMagick has provided an inbuilt function ‘rollImage()’ which takes

an image as input, rolls the image and the rolled image is obtained as output.

Syntax

The syntax of this method is shown below –

public Imagick::rollImage(int $x, int $y): bool

This function takes 2 parameters: x and y. ‘x’ and ‘y’ are integer values, and they specify

the x offset and y offset respectively.

PHP Image Magick

 77

Example

In this example, an image is taken as input by creating a new imagick object. Then,

‘rollImage()’ function is applied on it with the help of specified a and y offsets (x=30,

y=40). The rolled image is obtained as output.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->rollImage (300, 40);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/rollImage.png");

?>

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 78

In this chapter, you will be learning to spread an image and splice an image using a few

inbuilt functions of Imagemagick.

Image spreading

In this section, you will be learning to spread an image easily using the ‘spreadImage()’

function provided by Imagemagick. Spreading an image is randomly displacing each pixel

in a block.

Syntax

The syntax of this method is shown below –

public Imagick::spreadImage(float $radius): bool

This function takes in only one parameter: radius. ‘Radius’ is a float value that specifies

the value to displace each pixel in a block.

Example

In the below example, an imagick object is created and an image is taken as input. Now,

‘spreadImage()’ function is applied on the image with a single parameter(radius=5). Then,

the final image is displayed as output.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/imagee.png");

$image->spreadImage(5);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/spreadImage.png");

?>

Assume that the following is the input image (image.png) in the program –

19. PHP ImageMagick – Splicing & Spreading

PHP Image Magick

 79

Output

On executing the above program, it generates the following output –

Image splicing

In this chapter, you will be learning to splice a solid color into the image using an inbuilt

function named ‘spliceImage()’ in Imagemagick. This function takes an image as input,

and splices a solid color into the image with the specified parameters (dimensions and

positions of the splice).

Syntax

The syntax of this method is shown below –

public Imagick::spliceImage(

 int $width,

 int $height,

 int $x,

 int $y

): bool

This function contains 4 parameters: width, height, x, and y. ‘Width’ and ‘height’ are

integer values that specify the width and height of the splice respectively. ‘x’ and ‘y’ are

also integer values that specify the position on the X-axis and Y-axis respectively.

Example

In the below example, an imagick object is created and image is taken as input. On that

image, ‘spliceImage()’ function is applied with the parameters (width=50, height=100,

x=100, y=50). Then, the image after splicing is obtained as output.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.png");

$image->spliceImage(50, 100, 100, 50);

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/spliceImage.png");

?>

PHP Image Magick

 80

Assume that the following is the input image (image.png) in the program –

Output

On executing the above program, it generates the following output –

PHP Image Magick

 81

Applying functions

We have seen about predefined constants in ImageMagick in the "Predefined Constants"

chapter. To apply these function constants, ImageMagick provides an inbuilt function

`functionImage()` with three functions: undefined, polynomial and sinusoid. You can

use this function to apply these constants to images.

Syntax

The syntax of this method is shown below –

public Imagick::functionImage(int $function, array $arguments, int $channel =

Imagick::CHANNEL_DEFAULT): bool

This function mainly contains 2 parameters: function and arguments.

 Function refers to the list of function constants (sinusoid or polynomial).

 Arguments specifies the arguments to be passed to the function in an array format.

To apply the function, we need to create a new image using the ‘newPseudoImage()’

function and on that image, this function needs to be applied by specifying the parameters.

It doesn’t take any input but produces the output after applying the function.

Example

In this example, you can see the implementation of the function ‘functionImage()’ in

Imagemagick. This code consists of the creation of a new Imagick object and taking an

image as input.

A new image is created using ‘newPseudoImage()’ function with the required

measurements and then the function is applied. The function to be applied is specified as

one of the parameters in the ‘functionImage()’ function. The output image obtained is

displayed using ‘writeImage()’.

<?php

$image=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image5.jpeg");

$image->newPseudoImage(500, 400, 'gradient:white-brown');

$image->functionImage(Imagick::FUNCTION_SINUSOID, array(19, 33));

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/functionImage.png");

?>

Output

On executing the above program, it generates the following output –

20. PHP ImageMagick – Miscellaneous Operations

PHP Image Magick

 82

Image annotation

To recognize the whole image or meaning of the image, the image must be annotated.

Image annotation is a way of explanation in the form of text that is added to an image.

For this purpose, there is a function ‘annotateImage()’ provided in the Imagemagick
library.

Syntax

The syntax of this method is shown below –

public Imagick::annotateImage(ImagickDraw $draw_settings,float $x, float $y, fl

oat $angle, string $text): bool

This function has 5 parameters which are draw-settings, x, y, angle, and text.

draw_settings’ is an ImageMagick object that contains settings for drawing the text.

 x is the horizontal offset in pixels to the left of the text.

 y is the vertical offset in pixels to the baseline of the text.

 angle specifies the angle at which the text must be written
 text is the string to draw.

This function takes an image as input and the image with some annotated text is obtained

as output.

Example

In the following example, we create a new Imagick object ($img) and pass the image to

it. Then, create a new ImagickDraw object ($draw), and set the font size on that draw
object.

Finally, use 'annotateImage()' on your created Imagick object ('$img'), passing in your

drawobject, x-coordinate, y-coordinate, angle and text as parameters. The output
obtained is in the form of 'annotateImage.png'.

<?php

$draw=new ImagickDraw();

$img=new Imagick($_SERVER['DOCUMENT_ROOT']."/test/image.jpeg");

$draw->setFontSize(30);

$img->annotateImage($draw, 525, 820, 0, 'HAPPY DIWALI');

https://www.php.net/manual/en/class.imagickdraw.php

PHP Image Magick

 83

$image->writeImage($_SERVER['DOCUMENT_ROOT']."/test/annotateImage.png");

?>

Assume that the following is the input image (image.jpeg) in the program –

Output

On executing the above program, it generates the following output –

Grouping Images

Appending a set of images is the process of grouping all the images together such that

each image is attached to the end of another image and so on. To do this, Imagemagick

has provided an inbuilt function ‘appendImages()’ where you can append a set of
images into a larger image.

Syntax

The syntax of this method is shown below –

public Imagick::appendImages(bool $stack): Imagick

This function takes in a single Boolean parameter which is ‘stack’. This value is used to

decide whether to stack the images vertically or horizontally. The default value of ‘stack’

https://www.php.net/manual/en/class.imagick.php

PHP Image Magick

 84

is false. It means that the images are stacked from left to right. If the ‘stack’ value is
true, then the images are stacked from top to bottom.

Example:

The below example implements the ‘appendImages()’ function in PHP. In this

example, 5 new images are created with same measurements but different colors. Then,

pixel iterator is reset using ‘resetIterator()’ and then, all the created images are
appended using ‘appendImages()’ function and the output is obtained.

<?php

$image=new Imagick();

$image->newImage(100, 100, "black");

$image->newImage(100, 100, "white");

$image->newImage(100, 100, "black");

$image->newImage(100, 100, "white");

$image->newImage(100, 100, "black");

$image->resetIterator();

$combined=$image->appendImages(false);

$combined->writeImage($_SERVER['DOCUMENT_ROOT']."/test/appendImages.png");

?>

Output

On executing the above program, it generates the following output –

