
http://www.tutorialspoint.com/perl/perl_syntax.htm Copyright © tutorialspoint.com

PERL - SYNTAX OVERVIEWPERL - SYNTAX OVERVIEW

Perl borrows syntax and concepts from many languages: awk, sed, C, Bourne Shell, Smalltalk, Lisp
and even English. However, there are some definite differences between the languages. This
chapter is designd to quickly get you up to speed on the syntax that is expected in Perl.

A Perl program consists of a sequence of declarations and statements, which run from the top to
the bottom. Loops, subroutines, and other control structures allow you to jump around within the
code. Every simple statement must end with a semicolon ; .

Perl is a free-form language: you can format and indent it however you like. Whitespace serves
mostly to separate tokens, unlike languages like Python where it is an important part of the syntax,
or Fortran where it is immaterial.

First Perl Program

Interactive Mode Programming
You can use Perl interpreter with -e option at command line, which lets you execute Perl
statements from the command line. Let's try something at $ prompt as follows −

$perl -e 'print "Hello World\n"'

This execution will produce the following result −

Hello, world

Script Mode Programming
Assuming you are already on $ prompt, let's open a text file hello.pl using vi or vim editor and put
the following lines inside your file.

#!/usr/bin/perl

This will print "Hello, World"
print "Hello, world\n";

Here /usr/bin/perl is the actual perl interpreter binary. Before you execute your script, be sure to
change the mode of the script file and give execution priviledge, generally a setting of 0755 works
perfectly and finally you execute the above script as follows −

$chmod 0755 hello.pl
$./hello.pl

This execution will produce the following result −

Hello, world

You can use parentheses for functions arguments or omit them according to your personal taste.
They are only required occasionally to clarify the issues of precedence. Following two statements
produce the same result.

print("Hello, world\n");
print "Hello, world\n";

This will produce the following result −

Hello, world
Hello, world

http://www.tutorialspoint.com/perl/perl_syntax.htm

Perl File Extension
A Perl script can be created inside of any normal simple-text editor program. There are several
programs available for every type of platform. There are many programs designd for
programmers available for download on the web.

As a Perl convention, a Perl file must be saved with a .pl or .PL file extension in order to be
recognized as a functioning Perl script. File names can contain numbers, symbols, and letters but
must not contain a space. Use an underscore _ in places of spaces.

Comments in Perl
Comments in any programming language are friends of developers. Comments can be used to
make program user friendly and they are simply skipped by the interpreter without impacting the
code functionality. For example, in the above program, a line starting with hash #is a comment.

Simply saying comments in Perl start with a hash symbol and run to the end of the line −

This is a comment in perl

Lines starting with = are interpreted as the start of a section of embedded documentation pod, and
all subsequent lines until the next =cut are ignored by the compiler. Following is the example −

#!/usr/bin/perl

This is a single line comment
print "Hello, world\n";

=begin comment
This is all part of multiline comment.
You can use as many lines as you like
These comments will be ignored by the
compiler until the next =cut is encountered.
=cut

This will produce the following result −

Hello, world

Whitespaces in Perl
A Perl program does not care about whitespaces. Following program works perfectly fine −

#!/usr/bin/perl

print "Hello, world\n";

This will produce the following result −

Hello, world

But if spaces are inside the quoted strings, then they would be printed as is. For example −

#!/usr/bin/perl

This would print with a line break in the middle
print "Hello
 world\n";

This will produce the following result −

Hello

 world

All types of whitespace like spaces, tabs, newlines, etc. are equivalent for the interpreter when
they are used outside of the quotes. A line containing only whitespace, possibly with a comment, is
known as a blank line, and Perl totally ignores it.

Single and Double Quotes in Perl
You can use double quotes or single quotes around literal strings as follows −

#!/usr/bin/perl

print "Hello, world\n";
print 'Hello, world\n';

This will produce the following result −

Hello, world
Hello, world\n

There is an important difference in single and double quotes. Only double quotes interpolate
variables and special characters such as newlines \n, where as single quote does not interpolate
any variable or special character. Check below example where we are using $a as a variable to
store a value and later printing that value −

#!/usr/bin/perl

$a = 10;
print "Value of a = $a\n";
print 'Value of a = $a\n';

This will produce the following result −

Value of a = 10
Value of a = $a\n

"Here" Documents
You can store or print multiline text with a great comfort. Even you can make use of variables
inside the "here" document. Below is a simple syntax, check carefully there must be no space
between the << and the identifier.

An identifier may be either a bare word or some quoted text like we used EOF below. If identifier is
quoted, the type of quote you use determines the treatment of the text inside the here document,
just as in regular quoting. An unquoted identifier works like double quotes.

#!/usr/bin/perl

$a = 10;
$var = <<"EOF";
This is the syntax for here document and it will continue
until it encounters a EOF in the first line.
This is case of double quote so variable value will be
interpolated. For example value of a = $a
EOF
print "$var\n";

$var = <<'EOF';
This is case of single quote so variable value will not be
interpolated. For example value of a = $a
EOF
print "$var\n";

This will produce the following result −

This is the syntax for here document and it will continue
until it encounters a EOF in the first line.
This is case of double quote so variable value will be
interpolated. For example value of a = 10

This is case of single quote so variable value will be
interpolated. For example value of a = $a

Escaping Characters
Perl uses the backslash (\) character to escape any type of character that might interfere with our
code. Let's take one example where we want to print double quote and $ sign −

#!/usr/bin/perl

$result = "This is \"number\"";
print "$result\n";
print "\$result\n";

This will produce the following result −

This is "number"
$result

Perl Identifiers
A Perl identifier is a name used to identify a variable, function, class, module, or other object. A
Perl variable name starts with either $, @ or % followed by zero or more letters, underscores, and
digits (0 to 9).

Perl does not allow punctuation characters such as @, $, and % within identifiers. Perl is a case
sensitive programming language. Thus $Manpower and $manpower are two different
identifiers in Perl.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

