PERL - REFERENCES

A Perl reference is a scalar data type that holds the location of another value which could be
scalar, arrays, or hashes. Because of its scalar nature, a reference can be used anywhere, a scalar
can be used.

You can construct lists containing references to other lists, which can contain
references to hashes, and so on. This is how the nested data structures are builtin
Perl.

Create References

Itis easy to create a reference for any variable, subroutine or value by prefixing it with a backslash
as follows —

$scalarref = \$foo;
$arrayref = \@ARGV;
$hashref = \%ENV;
$coderef = \&handler;
$globref = *foo;

You cannot create a reference on an I/O handle filehandleordirhandle using the backslash operator but
a reference to an anonymous array can be created using the square brackets as follows —

$arrayref = [1, 2, ['a', 'b', 'c']];

Similar way you can create a reference to an anonymous hash using the curly brackets as follows

$hashref = {
'Adam' => 'Eve',
'Clyde' => 'Bonnie',

3

A reference to an anonymous subroutine can be created by using sub without a subname as
follows —

$coderef = sub { print "Boink!\n" };

Dereferencing

Dereferencing returns the value from a reference point to the location. To dereference a
reference simply use $, @ or % as prefix of the reference variable depending on whether the
reference is pointing to a scalar, array, or hash. Following is the example to explain the concept —

#!/usr/bin/perl
$var = 10;

Now $r has reference to $var scalar.
$r = \$var;

Print value available at the location stored in $r.
print "Value of $var is : ", $$r, "\n";

@var = (1, 2, 3);
Now $r has reference to @var array.
$r = \@var;

http://www.tutorialspoint.com/perl/perl_references.htm

Print values available at the location stored in $r.
print "value of @var is : ", @%$r, "\n";

%var = ('keyl' => 10, 'key2' => 20);

Now $r has reference to %var hash.

$r = \%var;

Print values available at the location stored in $r.
print "Value of %var is : ", %$r, "\n";

14

When above program is executed, it produces the following result —

Value of 10 is : 10
Value of 1 2 3 is : 123
Value of %var is : key220key110

If you are not sure about a variable type, then its easy to know its type using ref, which returns one
of the following strings if its argument is a reference. Otherwise, it returns false —

SCALAR
ARRAY
HASH
CODE
GLOB
REF

Let's try the following example —

#1/usr/bin/perl

$var = 10;
$r = \$var;
print "Reference type inr : ", ref($r), "\n";

@var = (1, 2, 3);

$r = \@var;

print "Reference type inr : ", ref($r), "\n";
%var = ('keyl' => 10, 'key2' => 20);

$r = \%var;

print "Reference type inr : ", ref($r), "\n";

When above program is executed, it produces the following result —

Reference type in r : SCALAR
Reference type in r : ARRAY
Reference type in r : HASH

Circular References

A circular reference occurs when two references contain a reference to each other. You have to
be careful while creating references otherwise a circular reference can lead to memory leaks.
Following is an example —

#!1/usr/bin/perl

my $foo = 100;
$foo = \$foo;

print "Value of foo is : ", $$foo, "\n";

When above program is executed, it produces the following result —

Value of foo is : REF(0x9aae38)

References to Functions

This might happen if you need to create a signal handler so you can produce a reference to a
function by preceding that function name with \& and to dereference that reference you simply
need to prefix reference variable using ampersand &. Following is an example —

#!/usr/bin/perl

Function definition
sub PrintHash{
my (%hash) = @_;

foreach $item (%hash){
print "Item : $item\n";
}
}

%hash = ('name' => 'Tom', 'age' => 19);

Create a reference to above function.
$cref = \&PrintHash;

Function call using reference.
&$cref(%hash);

When above program is executed, it produces the following result —

Item : name
Item : Tom

Item : age
Ttam * 10
Loading [MathJax]/jax/output/HTML-CSS/jax.js

