
http://www.tutorialspoint.com/perl/perl_database_access.htm Copyright © tutorialspoint.com

PERL - DATABASE ACCESSPERL - DATABASE ACCESS

This chapter teaches you how to access a database inside your Perl script. Starting from Perl 5 has
become very easy to write database applications using DBI module. DBI stands for Database
Independent Interface for Perl, which means DBI provides an abstraction layer between the Perl
code and the underlying database, allowing you to switch database implementations really easily.

The DBI is a database access module for the Perl programming language. It provides a set of
methods, variables, and conventions that provide a consistent database interface, independent of
the actual database being used.

Architecture of a DBI Application
DBI is independent of any database available in backend. You can use DBI whether you are
working with Oracle, MySQL or Informix, etc. This is clear from the following architure diagram.

Here DBI is responsible of taking all SQL commands through the API,
i. e. , ApplicationProgrammingInterface and to dispatch them to the appropriate driver for actual
execution. And finally, DBI is responsible of taking results from the driver and giving back it to the
calling scritp.

Notation and Conventions
Throughout this chapter following notations will be used and it is recommended that you should
also follow the same convention.

 $dsn Database source name
 $dbh Database handle object
 $sth Statement handle object
 $h Any of the handle types above ($dbh, $sth, or $drh)
 $rc General Return Code (boolean: true=ok, false=error)
 $rv General Return Value (typically an integer)
 @ary List of values returned from the database.
 $rows Number of rows processed (if available, else -1)
 $fh A filehandle
 undef NULL values are represented by undefined values in Perl
 \%attr Reference to a hash of attribute values passed to methods

Database Connection
Assuming we are going to work with MySQL database. Before connecting to a database make sure
of the followings. You can take help of our MySQL tutorial in case you are not aware about how to
create database and tables in MySQL database.

You have created a database with a name TESTDB.

You have created a table with a name TEST_TABLE in TESTDB.

This table is having fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

User ID "testuser" and password "test123" are set to access TESTDB.

http://www.tutorialspoint.com/perl/perl_database_access.htm

Perl Module DBI is installed properly on your machine.

You have gone through MySQL tutorial to understand MySQL Basics.

Following is the example of connecting with MySQL database "TESTDB" −

#!/usr/bin/perl

use DBI
use strict;

my $driver = "mysql";
my $database = "TESTDB";
my $dsn = "DBI:$driver:database=$database";
my $userid = "testuser";
my $password = "test123";

my $dbh = DBI->connect($dsn, $userid, $password) or die $DBI::errstr;

If a connection is established with the datasource then a Database Handle is returned and saved
into dbhforfurtheruseotherwisedbh is set to undef value and $DBI::errstr returns an error string.

INSERT Operation
INSERT operation is required when you want to create some records into a table. Here we are
using table TEST_TABLE to create our records. So once our database connection is established, we
are ready to create records into TEST_TABLE. Following is the procedure to create single record
into TEST_TABLE. You can create as many as records you like using the same concept.

Record creation takes the following steps−

Prearing SQL statement with INSERT statement. This will be done using prepare API.

Executing SQL query to select all the results from the database. This will be done using
execute API.

Releasing Stattement handle. This will be done using finish API.

If everything goes fine then commit this operation otherwise you can rollback complete
transaction. Commit and Rollback are explained in next sections.

my $sth = $dbh->prepare("INSERT INTO TEST_TABLE
 (FIRST_NAME, LAST_NAME, SEX, AGE, INCOME)
 values
 ('john', 'poul', 'M', 30, 13000)");
$sth->execute() or die $DBI::errstr;
$sth->finish();
$dbh->commit or die $DBI::errstr;

Using Bind Values
There may be a case when values to be entered is not given in advance. So you can use bind
variables which will take the required values at run time. Perl DBI modules make use of a question
mark in place of actual value and then actual values are passed through execute API at the run
time. Following is the example −

my $first_name = "john";
my $last_name = "poul";
my $sex = "M";
my $income = 13000;
my $age = 30;
my $sth = $dbh->prepare("INSERT INTO TEST_TABLE
 (FIRST_NAME, LAST_NAME, SEX, AGE, INCOME)
 values
 (?,?,?,?)");
$sth->execute($first_name,$last_name,$sex, $age, $income)

 or die $DBI::errstr;
$sth->finish();
$dbh->commit or die $DBI::errstr;

READ Operation
READ Operation on any databasse means to fetch some useful information from the database, i.e,
one or more records from one or more tables. So once our database connection is established, we
are ready to make a query into this database. Following is the procedure to query all the records
having AGE greater than 20. This will take four steps −

Prearing SQL SELECT query based on required conditions. This will be done using prepare
API.

Executing SQL query to select all the results from the database. This will be done using
execute API.

Fetching all the results one by one and printing those results.This will be done using
fetchrow_array API.

Releasing Stattement handle. This will be done using finish API.

my $sth = $dbh->prepare("SELECT FIRST_NAME, LAST_NAME
 FROM TEST_TABLE
 WHERE AGE > 20");
$sth->execute() or die $DBI::errstr;
print "Number of rows found :" + $sth->rows;
while (my @row = $sth->fetchrow_array()) {
 my ($first_name, $last_name) = @row;
 print "First Name = $first_name, Last Name = $last_name\n";
}
$sth->finish();

Using Bind Values
There may be a case when condition is not given in advance. So you can use bind variables, which
will take the required values at run time. Perl DBI modules makes use of a question mark in place
of actual value and then the actual values are passed through execute API at the run time.
Following is the example −

$age = 20;
my $sth = $dbh->prepare("SELECT FIRST_NAME, LAST_NAME
 FROM TEST_TABLE
 WHERE AGE > ?");
$sth->execute($age) or die $DBI::errstr;
print "Number of rows found :" + $sth->rows;
while (my @row = $sth->fetchrow_array()) {
 my ($first_name, $last_name) = @row;
 print "First Name = $first_name, Last Name = $last_name\n";
}
$sth->finish();

UPDATE Operation
UPDATE Operation on any database means to update one or more records already available in the
database tables. Following is the procedure to update all the records having SEX as 'M'. Here we
will increase AGE of all the males by one year. This will take three steps −

Prearing SQL query based on required conditions. This will be done using prepare API.

Executing SQL query to select all the results from the database. This will be done using
execute API.

Releasing Stattement handle. This will be done using finish API.

If everything goes fine then commit this operation otherwise you can rollback complete

transaction. See next section for commit and rollback APIs.

my $sth = $dbh->prepare("UPDATE TEST_TABLE
 SET AGE = AGE + 1
 WHERE SEX = 'M'");
$sth->execute() or die $DBI::errstr;
print "Number of rows updated :" + $sth->rows;
$sth->finish();
$dbh->commit or die $DBI::errstr;

Using Bind Values
There may be a case when condition is not given in advance. So you can use bind variables, which
will take required values at run time. Perl DBI modules make use of a question mark in place of
actual value and then the actual values are passed through execute API at the run time. Following
is the example −

$sex = 'M';
my $sth = $dbh->prepare("UPDATE TEST_TABLE
 SET AGE = AGE + 1
 WHERE SEX = ?");
$sth->execute('$sex') or die $DBI::errstr;
print "Number of rows updated :" + $sth->rows;
$sth->finish();
$dbh->commit or die $DBI::errstr;

In some case you would like to set a value, which is not given in advance so you can use binding
value as follows. In this example income of all males will be set to 10000.

$sex = 'M';
$income = 10000;
my $sth = $dbh->prepare("UPDATE TEST_TABLE
 SET INCOME = ?
 WHERE SEX = ?");
$sth->execute($income, '$sex') or die $DBI::errstr;
print "Number of rows updated :" + $sth->rows;
$sth->finish();

DELETE Operation
DELETE operation is required when you want to delete some records from your database.
Following is the procedure to delete all the records from TEST_TABLE where AGE is equal to 30.
This operation will take the following steps.

Prearing SQL query based on required conditions. This will be done using prepare API.

Executing SQL query to delete required records from the database. This will be done using
execute API.

Releasing Stattement handle. This will be done using finish API.

If everything goes fine then commit this operation otherwise you can rollback complete
transaction.

$age = 30;
my $sth = $dbh->prepare("DELETE FROM TEST_TABLE
 WHERE AGE = ?");
$sth->execute($age) or die $DBI::errstr;
print "Number of rows deleted :" + $sth->rows;
$sth->finish();
$dbh->commit or die $DBI::errstr;

Using do Statement
If you're doing an UPDATE, INSERT, or DELETE there is no data that comes back from the database,

so there is a short cut to perform this operation. You can use do statement to execute any of the
command as follows.

$dbh->do('DELETE FROM TEST_TABLE WHERE age =30');

do returns a true value if it succeeded, and a false value if it failed. Actually, if it succeeds it
returns the number of affected rows. In the example it would return the number of rows that were
actually deleted.

COMMIT Operation
Commit is the operation which gives a green signal to database to finalize the changes and after
this operation no change can be reverted to its orignal position.

Here is a simple example to call commit API.

$dbh->commit or die $dbh->errstr;

ROLLBACK Operation
If you are not satisfied with all the changes or you encounter an error in between of any operation ,
you can revert those changes to use rollback API.

Here is a simple example to call rollback API.

$dbh->rollback or die $dbh->errstr;

Begin Transaction
Many databases support transactions. This means that you can make a whole bunch of queries
which would modify the databases, but none of the changes are actually made. Then at the end,
you issue the special SQL query COMMIT, and all the changes are made simultaneously.
Alternatively, you can issue the query ROLLBACK, in which case all the changes are thrown away
and database remains unchanged.

Perl DBI module provided begin_work API, which enables transactions byturningAutoCommitoff until
the next call to commit or rollback. After the next commit or rollback, AutoCommit will
automatically be turned on again.

$rc = $dbh->begin_work or die $dbh->errstr;

AutoCommit Option
If your transactions are simple, you can save yourself the trouble of having to issue a lot of
commits. When you make the connect call, you can specify an AutoCommit option which will
perform an automatic commit operation after every successful query. Here's what it looks like −

my $dbh = DBI->connect($dsn, $userid, $password,
 {AutoCommit => 1})
 or die $DBI::errstr;

Here AutoCommit can take value 1 or 0, where 1 means AutoCommit is on and 0 means
AutoCommit is off.

Automatic Error Handling
When you make the connect call, you can specify a RaiseErrors option that handles errors for you
automatically. When an error occurs, DBI will abort your program instead of returning a failure
code. If all you want is to abort the program on an error, this can be convenient. Here's what it
looks like:

my $dbh = DBI->connect($dsn, $userid, $password,
 {RaiseError => 1})

 or die $DBI::errstr;

Here RaiseError can take value 1 or 0.

Disconnecting Database
To disconnect Database connection, use disconnect API as follows −

$rc = $dbh->disconnect or warn $dbh->errstr;

The transaction behaviour of the disconnect method is, sadly, undefined. Some database systems
suchasOracleandIngres will automatically commit any outstanding changes, but others suchasInformix will
rollback any outstanding changes. Applications not using AutoCommit should explicitly call commit
or rollback before calling disconnect.

Using NULL Values
Undefined values, or undef, are used to indicate NULL values. You can insert and update columns
with a NULL value as you would a non-NULL value. These examples insert and update the column
age with a NULL value −

$sth = $dbh->prepare(qq{
 INSERT INTO TEST_TABLE (FIRST_NAME, AGE) VALUES (?, ?)
 });
 $sth->execute("Joe", undef);

Here qq{} is used to return a quoted string to prepare API. However, care must be taken when
trying to use NULL values in a WHERE clause. Consider −

SELECT FIRST_NAME FROM TEST_TABLE WHERE age = ?

Binding an undef NULL to the placeholder will not select rows, which have a NULL age! At least for
database engines that conform to the SQL standard. Refer to the SQL manual for your database
engine or any SQL book for the reasons for this. To explicitly select NULLs you have to say "WHERE
age IS NULL".

A common issue is to have a code fragment handle a value that could be either defined or undef
non − NULLorNULL at runtime. A simple technique is to prepare the appropriate statement as
needed, and substitute the placeholder for non-NULL cases −

$sql_clause = defined $age? "age = ?" : "age IS NULL";
$sth = $dbh->prepare(qq{
 SELECT FIRST_NAME FROM TEST_TABLE WHERE $sql_clause
 });
$sth->execute(defined $age ? $age : ());

Some Other DBI Functions

available_drivers

@ary = DBI->available_drivers;
@ary = DBI->available_drivers($quiet);

Returns a list of all available drivers by searching for DBD::* modules through the directories in
@INC. By default, a warning is given if some drivers are hidden by others of the same name in
earlier directories. Passing a true value for $quiet will inhibit the warning.

installed_drivers

%drivers = DBI->installed_drivers();

Returns a list of driver name and driver handle pairs for all drivers 'installed' loaded into the current

process. The driver name does not include the 'DBD::' prefix.

data_sources

@ary = DBI->data_sources($driver);

Returns a list of data sources databases available via the named driver. If $driver is empty or undef,
then the value of the DBI_DRIVER environment variable is used.

quote

$sql = $dbh->quote($value);
$sql = $dbh->quote($value, $data_type);

Quote a string literal for use as a literal value in an SQL statement, by escaping any special
characters suchasquotationmarks contained within the string and adding the required type of outer
quotation marks.

$sql = sprintf "SELECT foo FROM bar WHERE baz = %s",
 $dbh->quote("Don't");

For most database types, quote would return 'Don''t' includingtheouterquotationmarks. It is valid for the
quote method to return an SQL expression that evaluates to the desired string. For example −

$quoted = $dbh->quote("one\ntwo\0three")

may produce results which will be equivalent to

CONCAT('one', CHAR(12), 'two', CHAR(0), 'three')

Methods Common to All Handles

err

$rv = $h->err;
or
$rv = $DBI::err
or
$rv = $h->err

Returns the native database engine error code from the last driver method called. The code is
typically an integer but you should not assume that. This is equivalent to DBI :: errorh->err.

errstr

$str = $h->errstr;
or
$str = $DBI::errstr
or
$str = $h->errstr

Returns the native database engine error message from the last DBI method called. This has the
same lifespan issues as the "err" method described above. This is equivalent to DBI :: errstrorh-
>errstr.

rows

$rv = $h->rows;
or
$rv = $DBI::rows

This returns the number of rows effected by previous SQL statement and equivalent to $DBI::rows.

trace

$h->trace($trace_settings);

DBI sports an extremely useful ability to generate runtime tracing information of what it's doing,
which can be a huge time-saver when trying to track down strange problems in your DBI programs.
You can use different values to set trace level. These values varies from 0 to 4. The value 0 means
disable trace and 4 means generate complete trace.

Interpolated Statements are Prohibited
It is highly recommended not to use interpolated statements as follows −

while ($first_name = <>) {
 my $sth = $dbh->prepare("SELECT *
 FROM TEST_TABLE
 WHERE FIRST_NAME = '$first_name'");
 $sth->execute();
 # and so on ...
}

Thus don't use interpolated statement instead use bind value to prepare dynamic SQL statement.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

