
http://www.tutorialspoint.com/pascal/pascal_operators.htm Copyright © tutorialspoint.com

PASCAL - OPERATORSPASCAL - OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. Pascal allows the following types of operators −

Arithmetic operators
Relational operators
Boolean operators
Bit operators
Set operators
String operators

Let us discuss the arithmetic, relational, Boolean and bit operators one by one. We will discuss the
set operators and string operations later.

Arithmetic Operators
Following table shows all the arithmetic operators supported by Pascal. Assume variable A holds
10 and variable B holds 20, then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

div Divides numerator by denominator B div A will give 2

mod Modulus Operator and remainder of after an
integer division

B mod A will give 0

Relational Operators
Following table shows all the relational operators supported by Pascal. Assume variable A holds 10
and variable B holds 20, then −

Show Examples

Operator Description Example

= Checks if the values of two operands are equal or
not, if yes, then condition becomes true.

A = B is not true.

<> Checks if the values of two operands are equal or
not, if values are not equal, then condition becomes
true.

A <> B is true.

> Checks if the value of left operand is greater than
the value of right operand, if yes, then condition
becomes true.

A > B is not true.

< Checks if the value of left operand is less than the A < B is true.

http://www.tutorialspoint.com/pascal/pascal_operators.htm
/pascal/pascal_arithmetic_operators.htm
/pascal/pascal_relational_operators.htm

value of right operand, if yes, then condition
becomes true.

>= Checks if the value of left operand is greater than
or equal to the value of right operand, if yes, then
condition becomes true.

A >= B is not true.

<= Checks if the value of left operand is less than or
equal to the value of right operand, if yes, then
condition becomes true.

A <= B is true.

Boolean Operators
Following table shows all the Boolean operators supported by Pascal language. All these operators
work on Boolean operands and produce Boolean results. Assume variable A holds true and
variable B holds false, then −

Show Examples

Operator Description Example

and Called Boolean AND operator. If both the operands
are true, then condition becomes true.

AandB is false.

and then It is similar to the AND operator, however, it
guarantees the order in which the compiler
evaluates the logical expression. Left to right and
the right operands are evaluated only when
necessary.

AandthenB is false.

or Called Boolean OR Operator. If any of the two
operands is true, then condition becomes true.

AorB is true.

or else It is similar to Boolean OR, however, it guarantees
the order in which the compiler evaluates the
logical expression. Left to right and the right
operands are evaluated only when necessary.

AorelseB is true.

not Called Boolean NOT Operator. Used to reverse the
logical state of its operand. If a condition is true,
then Logical NOT operator will make it false.

not AandB is true.

Bit Operators
Bitwise operators work on bits and perform bit-by-bit operation. All these operators work on
integer operands and produces integer results. The truth table for bitwise and & , bitwise or | , and
bitwise not are as follows −

p q p & q p | q ~p ~q

0 0 0 0 1 1

0 1 0 1 1 0

1 1 1 1 0 0

1 0 0 1 0 1

Assume if A = 60; and B = 13; now in binary format they will be as follows −

/pascal/pascal_boolean_operators.htm

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by Pascal are listed in the following table. Assume variable A
holds 60 and variable B holds 13, then:

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result if it
exists in both operands.

A & B will give 12, which is
0000 1100

| Binary OR Operator copies a bit if it exists in either
operand.

A | B will give 61, which is
0011 1101

! Binary OR Operator copies a bit if it exists in either
operand. Its same as | operator.

A !B will give 61, which is 0011
1101

~ Binary Ones Complement Operator is unary and
has the effect of 'flipping' bits.

 A will give -61, which is 1100
0011 in 2's complement form
due to a signed binary
number.

<< Binary Left Shift Operator. The left operands value
is moved left by the number of bits specified by the
right operand.

A << 2 will give 240, which is
1111 0000

>> Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by
the right operand.

A >> 2 will give 15, which is
0000 1111

Please note that different implementations of Pascal differ in bitwise operators. Free Pascal, the
compiler we used here, however, supports the following bitwise operators −

Operators Operations

not Bitwise NOT

and Bitwise AND

or Bitwise OR

xor Bitwise exclusive OR

shl Bitwise shift left

shr Bitwise shift right

<< Bitwise shift left

>> Bitwise shift right

/pascal/pascal_bit_operators.htm

Operators Precedence in Pascal
Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator.

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

Operator Precedence

~, not, Highest

*, /, div, mod, and, &

|, !, +, -, or,

=, <>, <, <=, >, >=, in

or else, and then Lowest

Loading [MathJax]/jax/output/HTML-CSS/jax.js

/pascal/pascal_operators_precedence.htm

