
http://www.tutorialspoint.com/pascal/pascal_files_handling.htm Copyright © tutorialspoint.com

PASCAL - FILE HANDLINGPASCAL - FILE HANDLING

Pascal treats a file as a sequence of components, which must be of uniform type. A file's type is
determined by the type of the components. File data type is defined as −

type
file-name = file of base-type;

Where, the base-type indicates the type of the components of the file. The base type could be
anything like, integer, real, Boolean, enumerated, subrange, record, arrays and sets except
another file type. Variables of a file type are created using the var declaration −

var
f1, f2,...: file-name;

Following are some examples of defining some file types and file variables −

type
 rfile = file of real;
 ifile = file of integer;
 bfile = file of boolean;
 datafile = file of record
 arrfile = file of array[1..4] of integer;

var
 marks: arrfile;
 studentdata: datafile;
 rainfalldata: rfile;
 tempdata: ifile;
 choices: bfile;

Creating and Writing to a File
Let us write a program that would create a data file for students' records. It would create a file
named students.dat and write a student's data into it −

program DataFiles;
type
 StudentRecord = Record
 s_name: String;
 s_addr: String;
 s_batchcode: String;
 end;

var
 Student: StudentRecord;
 f: file of StudentRecord;

begin
 Assign(f,'students.dat');
 Rewrite(f);
 Student.s_name := 'John Smith';
 Student.s_addr := 'United States of America';
 Student.s_batchcode := 'Computer Science';
 Write(f,Student);
 Close(f);
end.

When compiled and run, the program would create a file named students.dat into the working
directory. You can open the file using a text editor, like notepad, to look at John Smith's data.

Reading from a File

http://www.tutorialspoint.com/pascal/pascal_files_handling.htm

We have just created and written into a file named students.dat. Now, let us write a program that
would read the student's data from the file −

program DataFiles;
type
 StudentRecord = Record
 s_name: String;
 s_addr: String;
 s_batchcode: String;
 end;

var
 Student: StudentRecord;
 f: file of StudentRecord;

begin
 assign(f, 'students.dat');
 reset(f);
 while not eof(f) do

 begin
 read(f,Student);
 writeln('Name: ',Student.s_name);
 writeln('Address: ',Student.s_addr);
 writeln('Batch Code: ', Student.s_batchcode);
 end;

 close(f);
end.

When the above code is compiled and executed, it produces the following result −

Name: John Smith
Address: United States of America
Batch Code: Computer Science

Files as Subprogram Parameter
Pascal allows file variables to be used as parameters in standard and user-defined subprograms.
The following example illustrates this concept. The program creates a file named rainfall.txt and
stores some rainfall data. Next, it opens the file, reads the data and computes the average rainfall.

Please note that, if you use a file parameter with subprograms, it must be declared as a
var parameter.

program addFiledata;
const
 MAX = 4;
type
 raindata = file of real;

var
 rainfile: raindata;
 filename: string;
procedure writedata(var f: raindata);

var
 data: real;
 i: integer;

begin
 rewrite(f, sizeof(data));
 for i:=1 to MAX do

 begin
 writeln('Enter rainfall data: ');

 readln(data);
 write(f, data);
 end;

 close(f);
end;

procedure computeAverage(var x: raindata);
var
 d, sum: real;
 average: real;

begin
 reset(x);
 sum:= 0.0;
 while not eof(x) do

 begin
 read(x, d);
 sum := sum + d;
 end;

 average := sum/MAX;
 close(x);
 writeln('Average Rainfall: ', average:7:2);
end;

begin
 writeln('Enter the File Name: ');
 readln(filename);
 assign(rainfile, filename);
 writedata(rainfile);
 computeAverage(rainfile);
end.

When the above code is compiled and executed, it produces the following result −

Enter the File Name:
rainfall.txt
Enter rainfall data:
34
Enter rainfall data:
45
Enter rainfall data:
56
Enter rainfall data:
78
Average Rainfall: 53.25

Text Files
A text file, in Pascal, consists of lines of characters where each line is terminated with an end-of-
line marker. You can declare and define such files as −

type
file-name = text;

Difference between a normal file of characters and a text file is that a text file is divided into lines,
each terminated by a special end-of-line marker, automatically inserted by the system. The
following example creates and writes into a text file named contact.txt −

program exText;
var
 filename, data: string;
 myfile: text;

begin

 writeln('Enter the file name: ');
 readln(filename);

 assign(myfile, filename);
 rewrite(myfile);

 writeln(myfile, 'Note to Students: ');
 writeln(myfile, 'For details information on Pascal Programming');
 writeln(myfile, 'Contact: Tutorials Point');
 writeln('Completed writing');

 close(myfile);
end.

When the above code is compiled and executed, it produces the following result −

Enter the file name:
contact.txt
Completed writing

Appending to a File
Appending to a file means writing to an existing file that already has some data without overwriting
the file. The following program illustrates this −

program exAppendfile;
var
 myfile: text;
 info: string;

begin
 assign(myfile, 'contact.txt');
 append(myfile);

 writeln('Contact Details');
 writeln('webmaster@tutorialspoint.com');
 close(myfile);

 (* let us read from this file *)
 assign(myfile, 'contact.txt');
 reset(myfile);
 while not eof(myfile) do

 begin
 readln(myfile, info);
 writeln(info);
 end;
 close(myfile);
end.

When the above code is compiled and executed, it produces the following result −

Contact Details
webmaster@tutorialspoint.com
Note to Students:
For details information on Pascal Programming
Contact: Tutorials Point

File Handling Functions
Free Pascal provides the following functions/procedures for file handling −

Sr.No. Function Name & Description

1

1
procedure Appendvart:Text;

Opens a file in append mode

2
procedure Assignoutf: file; constName: ;

Assigns a name to a file

3
procedure Assignoutf: file; p:PChar;

Assigns a name to a file

4
procedure Assignoutf: file; c:Char;

Assigns a name to a file

5
procedure Assignoutf:TypedFile; constName: ;

Assigns a name to a file

6
procedure Assignoutf:TypedFile; p:PChar;

Assigns a name to a file

7
procedure Assignoutf:TypedFile; c:Char;

Assigns a name to a file

8
procedure Assignoutt:Text; consts: ;

Assigns a name to a file

9
procedure Assignoutt:Text; p:PChar;

Assigns a name to a file

10
procedure Assignoutt:Text; c:Char;

Assigns a name to a file

11
procedure BlockReadvarf: file; varBuf; count: Int64; varResult: Int64;

Reads data from a file into memory

12
procedure BlockReadvarf: file; varBuf; count:LongInt; varResult:LongInt;

Reads data from a file into memory

13
procedure BlockReadvarf: file; varBuf; count:Cardinal; varResult:Cardinal;

Reads data from a file into memory

14
procedure BlockReadvarf: file; varBuf; count:Word; varResult:Word;

Reads data from a file into memory

15
procedure BlockReadvarf: file; varBuf; count:Word; varResult: Integer;

Reads data from a file into memory

16
procedure BlockReadvarf: file; varBuf; count: Int64;

Reads data from a file into memory

17
procedure BlockWritevarf: file; constBuf; Count: Int64; varResult: Int64;

Writes data from memory to a file

18
procedure BlockWritevarf: file; constBuf; Count:LongInt; varResult:LongInt;

Writes data from memory to a file

19
procedure BlockWritevarf: file; constBuf; Count:Cardinal; varResult:Cardinal;

Writes data from memory to a file

20
procedure BlockWritevarf: file; constBuf; Count:Word; varResult:Word;

Writes data from memory to a file

21
procedure BlockWritevarf: file; constBuf; Count:Word; varResult: Integer;

Writes data from memory to a file

22
procedure BlockWritevarf: file; constBuf; Count:LongInt;

Writes data from memory to a file

23
procedure Closevarf: file;

Closes a file

24
procedure Closevart:Text;

Closes a file

25
function EOFvarf: file:Boolean;

Checks for end of file

26
function EOFvart:Text:Boolean;

Checks for end of file

27
function EOF: Boolean;

Checks for end of file

28
function EOLnvart:Text:Boolean;

Checks for end of line

29
function EOLn: Boolean;

Checks for end of line

30
procedure Erasevarf: file;

Deletes file from disk

31
procedure Erasevart:Text;

Deletes file from disk

32
function FilePosvarf: file:Int64;

Position in file

33
function FileSizevarf: file:Int64;

Size of file

34
procedure Flushvart:Text;

Writes file buffers to disk

35
function IOResult: Word;

Returns result of last file IO operation

36
procedure ReadvarF:Text; Args:Arguments;

Reads from file into variable

37
procedure ReadArgs:Arguments;

Reads from file into variable

38
procedure ReadLnvarF:Text; Args:Arguments;

Reads from file into variable and goto next line

39
procedure ReadLnArgs:Arguments;

Reads from file into variable and goto next line

40
procedure Renamevarf: file; consts: ;

Renames file on disk

41
procedure Renamevarf: file; p:PChar;

Renames file on disk

42
procedure Renamevarf: file; c:Char;

Renames file on disk

43
procedure Renamevart:Text; consts;

Rename file on disk

44
procedure Renamevart:Text; p:PChar;

Renames file on disk

45
procedure Renamevart:Text; c:Char;

Renames file on disk

46
procedure Resetvarf: file; l:LongInt;

Opens file for reading

47
procedure Resetvarf: file;

Opens file for reading

48
procedure Resetvarf:TypedFile;

Opens file for reading

49
procedure Resetvart:Text;

Opens file for reading

50
procedure Rewritevarf: file; l:LongInt;

Opens file for writing

51
procedure Rewritevarf: file;

Opens file for writing

52
procedure Rewritevarf:TypedFile;

Opens file for writing

53
procedure Rewritevart:Text;

Opens file for writing

54
procedure Seekvarf: file; Pos: Int64;

Sets file position

55
function SeekEOFvart:Text:Boolean;

Sets file position to end of file

56
function SeekEOF: Boolean;

Sets file position to end of file

57
function SeekEOLnvart:Text:Boolean;

Sets file position to end of line

58
function SeekEOLn: Boolean;

Sets file position to end of line

59
procedure SetTextBufvarf:Text; varBuf;

Sets size of file buffer

60
procedure SetTextBufvarf:Text; varBuf; Size: SizeInt;

Sets size of file buffer

61
procedure TruncatevarF: file;

Truncate the file at position

62
procedure WriteArgs:Arguments;

Writes variable to file

63
procedure WritevarF:Text; Args:Arguments;

Write variable to file

64
procedure WritelnArgs:Arguments;

Writes variable to file and append newline

65
procedure WriteLnvarF:Text; Args:Arguments;

Writes variable to file and append newline

Processing math: 100%

