PASCAL - FILE HANDLING

Pascal treats a file as a sequence of components, which must be of uniform type. A file's type is
determined by the type of the components. File data type is defined as —

type
file-name = file of base-type;

Where, the base-type indicates the type of the components of the file. The base type could be
anything like, integer, real, Boolean, enumerated, subrange, record, arrays and sets except
another file type. Variables of a file type are created using the var declaration —

var
fi, f2,...: file-name;

Following are some examples of defining some file types and file variables —

type
rfile = file of real;
ifile = file of integer;
bfile = file of boolean;

datafile = file of record
arrfile = file of array[1..4] of integer;

var
marks: arrfile;
studentdata: datafile;
rainfalldata: rfile;
tempdata: ifile;
choices: bfile;

Creating and Writing to a File

Let us write a program that would create a data file for students' records. It would create a file
named students.dat and write a student's data into it —

program DataFiles;
type
StudentRecord = Record
s_name: String;
s_addr: String;
s_batchcode: String;
end;

var
Student: StudentRecord;
f: file of StudentRecord;

begin
Assign(f, 'students.dat');
Rewrite(f);
Student.s_name := 'John Smith';
Student.s_addr := 'United States of America';
Student.s_batchcode := 'Computer Science';
Write(f, Student);
Close(f);

end.

When compiled and run, the program would create a file named students.dat into the working
directory. You can open the file using a text editor, like notepad, to look at John Smith's data.

Reading from a File


http://www.tutorialspoint.com/pascal/pascal_files_handling.htm

We have just created and written into a file named students.dat. Now, let us write a program that
would read the student's data from the file —

program DataFiles;
type
StudentRecord = Record
S _name: String;
s _addr: String;
s_batchcode: String;
end;

var
Student: StudentRecord;
f: file of StudentRecord;

begin
assign(f, 'students.dat');
reset(f);
while not eof(f) do

begin
read(f, Student);
writeln('Name: ', Student.s_name);
writeln('Address: ', Student.s_addr);
writeln('Batch Code: ', Student.s_batchcode);
end;

close(f);
end.

When the above code is compiled and executed, it produces the following result —

Name: John Smith
Address: United States of America
Batch Code: Computer Science

Files as Subprogram Parameter

Pascal allows file variables to be used as parameters in standard and user-defined subprograms.
The following example illustrates this concept. The program creates a file named rainfall.txt and
stores some rainfall data. Next, it opens the file, reads the data and computes the average rainfall.

Please note that, if you use a file parameter with subprograms, it must be declared as a
var parameter.

program addFiledata;
const
MAX = 4;
type
raindata = file of real;

var
rainfile: raindata;
filename: string;

procedure writedata(var f: raindata);

var
data: real;
i: integer;

begin
rewrite(f, sizeof(data));
for i:=1 to MAX do

begin
writeln('Enter rainfall data: ');



readln(data);
write(f, data);
end;

close(f);
end;

procedure computeAverage(var x: raindata);
var

d, sum: real;

average: real;

begin
reset(x);
sum:= 0.0;

while not eof(x) do

begin
read(x, d);
sum := sum + d;
end;
average := sum/MAX;
close(x);
writeln('Average Rainfall: ', average:7:2);
end;
begin

writeln('Enter the File Name: ');
readln(filename);
assign(rainfile, filename);
writedata(rainfile);
computeAverage(rainfile);

end.

When the above code is compiled and executed, it produces the following result —

Enter the File Name:
rainfall.txt

Enter rainfall data:
34

Enter rainfall data:
45

Enter rainfall data:
56

Enter rainfall data:
78

Average Rainfall: 53.25

Text Files

A text file, in Pascal, consists of lines of characters where each line is terminated with an end-of-
line marker. You can declare and define such files as —

type
file-name = text;

Difference between a normal file of characters and a text file is that a text file is divided into lines,
each terminated by a special end-of-line marker, automatically inserted by the system. The
following example creates and writes into a text file named contact.txt —

program exText;

var
filename, data: string;
myfile: text;

begin



writeln('Enter the file name: ');
readln(filename);

assign(myfile, filename);
rewrite(myfile);

writeln(myfile, 'Note to Students: ');

writeln(myfile, 'For details information on Pascal Programming');
writeln(myfile, 'Contact: Tutorials Point');

writeln('Completed writing');

close(myfile);
end.

When the above code is compiled and executed, it produces the following result —

Enter the file name:
contact.txt
Completed writing

Appending to a File

Appending to a file means writing to an existing file that already has some data without overwriting
the file. The following program illustrates this —

program exAppendfile;
var
myfile: text;
info: string;

begin
assign(myfile, 'contact.txt');
append(myfile);

writeln('Contact Details');
writeln('webmaster@tutorialspoint.com');
close(myfile);

(* let us read from this file *)
assign(myfile, 'contact.txt');
reset(myfile);

while not eof(myfile) do

begin
readln(myfile, info);
writeln(info);
end;
close(myfile);
end.

When the above code is compiled and executed, it produces the following result —

Contact Details

webmaster@tutorialspoint.com

Note to Students:

For details information on Pascal Programming
Contact: Tutorials Point

File Handling Functions

Free Pascal provides the following functions/procedures for file handling —

Sr.No. Function Name & Description

1



procedure Appenduvart: Text;

Opens a file in append mode

2
procedure Assignoutf: file; constName: ;
Assighs a name to a file

3
procedure Assignoutf: file; p: PChar;
Assighs a name to a file

4
procedure Assignoutf: file; c: Char;
Assighs a name to a file

5
procedure Assignoutf: TypedFile; constName: ;
Assighs a name to a file

6
procedure Assignoutf: TypedFile; p: PChar;
Assighs a name to a file

7
procedure Assignoutf: TypedFile; c: Char;
Assigns a name to a file

8
procedure Assignoutt: Text; consts: }
Assighs a name to a file

9
procedure Assignoutt: Text; p: PChar;
Assighs a name to a file

10
procedure Assignoutt: Text; c: Char;
Assighs a name to a file

11
procedure BlockReadvarf: file; varBuf; count: Int64; varResult: Int64;
Reads data from a file into memory

12

procedure BlockReadvarf: file; varBuf; count: LongInt; varResult: LongInt;

Reads data from a file into memory



13

14

15

16

17

18

19

20

21

22

23

24

procedure BlockReadvarf: file; varBuf; count: Cardinal; varResult: Cardinal;

Reads data from a file into memory

procedure BlockReadvarf: file; varBuf; count: Word; varResult: Word;

Reads data from a file into memory

procedure BlockReadvarf: file; varBuf; count: Word; varResult: Integer;

Reads data from a file into memory

procedure BlockReadvarf: file; varBuf; count: Int64;

Reads data from a file into memory

procedure BlockWritevarf: file; constBuf; Count

Writes data from memory to a file

procedure BlockWritevarf: file; constBuf; Count

Writes data from memory to a file

procedure BlockWritevarf: file; constBuf; Count

Writes data from memory to a file

procedure BlockWritevarf: file; constBuf; Count

Writes data from memory to a file

procedure BlockWritevarf: file; constBuf; Count

Writes data from memory to a file

procedure BlockWritevarf: file; constBuf; Count

Writes data from memory to a file

procedure Closevarf: file;

Closes a file

procedure Closevart: Text;

Closes a file

: Int64; varResult: Int64;

: LongInt; varResult: LonglInt;

: Cardinal; varResult: Cardinal;

: Word; varResult: Word,

: Word; varResult: Integer;

: Longlnt;



25

26

27

28

29

30

31

32

33

34

35

36

function EOFvarf: file:Boolean;

Checks for end of file

function EOFvart: Text:Boolean;

Checks for end of file

function EOF: Boolean;

Checks for end of file

function EOLnvart: Text:Boolean;

Checks for end of line

function EOLNn: Boolean;

Checks for end of line

procedure Erasevarf: file;

Deletes file from disk

procedure Erasevart: Text;

Deletes file from disk

function FilePosvarf: file:Int64;

Position in file

function FileSizevarf: file:Int64;

Size of file

procedure Flushvart: Text;

Writes file buffers to disk

function IOResult: Word;

Returns result of last file IO operation

procedure ReadvarF: Text; Args: Arguments;

Reads from file into variable



37

38

39

40

41

42

43

44

45

46

47

48

procedure ReadArgs: Arguments;

Reads from file into variable

procedure ReadLnvarF: Text; Args: Arguments;

Reads from file into variable and goto next line

procedure ReadLnArgs: Arguments;

Reads from file into variable and goto next line

procedure Renamevarf: file; consts: ;

Renames file on disk

procedure Renamevarf: file; p: PChar;

Renames file on disk

procedure Renamevarf: file; c: Char;

Renames file on disk

procedure Renamevart: Text; consts;

Rename file on disk

procedure Renamevart: Text; p: PChar;

Renames file on disk

procedure Renamevart: Text; c: Char;

Renames file on disk

procedure Resetvarf: file; I: LongInt;

Opens file for reading

procedure Resetvarf: file;

Opens file for reading

procedure Resetvarf: TypedFile;

Opens file for reading



49

50

51

52

53

54

55

56

57

58

59

60

procedure Resetvart: Text;

Opens file for reading

procedure Rewritevarf: file; I: LongInt;

Opens file for writing

procedure Rewritevarf: file;

Opens file for writing

procedure Rewritevarf: TypedFile;

Opens file for writing

procedure Rewritevart: Text;

Opens file for writing

procedure Seekvarf: file; Pos: Int64;

Sets file position

function SeekEOFvart: Text:Boolean;

Sets file position to end of file

function SeekEOF: Boolean;

Sets file position to end of file

function SeekEOLnvart: Text:Boolean;

Sets file position to end of line

function SeekEOLn: Boolean;

Sets file position to end of line

procedure SetTextBufvarf: Text; varBuf;

Sets size of file buffer

procedure SetTextBufvarf: Text; varBuf; Size: Sizelnt;



61

62

63

64

65

Sets size of file buffer

procedure TruncatevarF: file;

Truncate the file at position

procedure WriteArgs: Arguments;

Writes variable to file

procedure WritevarF: Text; Args: Arguments;

Write variable to file

procedure WritelnArgs: Arguments;

Writes variable to file and append newline

procedure WriteLnvarF: Text; Args: Arguments;

Writes variable to file and append newline

Processing math: 100%



