parrot perl virtual machine

tutorialspoint

S I MPLYEASYULEARNING

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia B https://twitter.com/tutorialspoint

About the Tutorial

Parrot is a virtual machine designed to efficiently compile and execute bytecode for
interpreted languages.

Parrot is going to change the way you see PERL!

Audience

This tutorial has been designed for users who are willing to learn Microsoft PowerPoint in
simple steps and they do not have much knowledge about computer usage and Microsoft
applications. This tutorial will give you enough understanding on MS PowerPoint from
where you can take yourself at higher level of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of computer
peripherals like mouse, keyboard, monitor, screen etc. and their basic operations.

Copyright & Disclaimer

© Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point
(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or
republish any contents or a part of contents of this e-book in any manner without written
consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely
as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)
Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of
our website or its contents including this tutorial. If you discover any errors on our
website or in this tutorial, please notify us at contact@tutorialspoint.com

fv" tutorialspoint

mailto:contact@tutorialspoint.com

Table of Contents

PAY T U1 o 4 T T o] o T | PO N i

F X T 1= Vol O RPN i
Prer@QUISITES cooiieieeeeiiiiiiiiiriiiiiiieiirnrieisses st sse s st s s s saasssse st s s s s sassssssssstsssssssssssssnssssssssssssssnsssnsssssssssnnsnnnes i
CoPYright & DiSCIAIMET......uiiiiiiiiiiiiiiiiiiiiiiiisiisiisisss i
TabIE Of CONLENTScceeeeiiiieeiiecccerteeeeiereeeerereeeeeeeesreseenansssseeseseennsssssssssesennnsssssssseeesnnnssssssssessnnnnssssssnnnnn i

1. PARROT —OVERVIEW ...ttt nnnnnnnnnn 1
2. PARROT — INSTALLATION. ...t iiiiieiiieiiieieieisisierers s s s s s s s s s s ssnsnnnnns 2
3. PARROT—=INSTRUCTIONS FORMAT ...ttt 3
B I TR T T T = N 3

4. PARROT — GARBAGE COLLECTIONccctiiiiiiiiiiitieeeieee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseseeesesnsnsssnennn 4
5. PARROT = DATATYPES ..., 5
WAt Qr@ PIVICS?....cuuuieieiiiiiiiiiineteeiiiiisissnseesssissssssssssessnsesssssssssnns 5

6. PARROT — REGISTERS...... oottt e et ee e e e e e e e e ea bt eeesesesesraessaaasesesesesnnnnnnnns 6
7. PARROT —OPERATIONSottt ettt ettt e e e e e e e eeebas e e e s eseseeessaneesesesesensnnnnnnns 7
8. PARROT —BRANCHES oottt ettt e e e e e e e et ee e e s e s e sreeass i eesesesesesnnnnnnnns 8
= 1 o A0 =T - 1 o1 N 9

9. PARROT —PROGRAMMING EXAMPLES ...ttt e e eeat e s seeeeene s 10
(0 Y Lol o 11| [0 IRV Yo T o o | TS TTTS 10
USING REEISTEIS ...cceenueeiiiiiiieiieieeirritetenseeesrereennsssssesseeeenmssssssssseeennnsssssssseeennnsssssssssssennnssssssssesennnnssssssnnnes 10
SUMMING SQUAES....ceeeeeeecieriieeeennieeerereennsssssseseeremmssssssssseeesnsssssssssesennnssssssssseennnssssssssssesnnnsssssssssesnnnnsnnnns 11
FIboNacCi NUMDETS....ccccceriiiiiiiiientiiiinn e sssss e s s s sass e s s s s sssssssanns e s s ssssssssnnsnsnnsssas 13
Recursively computing factorialeeeeeeeeeeeeeeeeeeeeeeeememeemmeemmememeemesmsssnns 14

i

&" tutorialspoint

(07070 0 o 11 [T3¥ =48 o TN 2 -1 o

PIR VS, PASIM ...ueeeeiiiiiiiitnnittninnnnnnnnessnssssannsseesssssssaassssssssssssssnnnasssssssssssnsanssssssssssnnnsassssssssssnnnnnsssssss

10. PARROT —USEFUL RESOURCES.......coiiiiiiiiiiiiiiiii e

> tutorialspoint

1. Parrot — Overview

When we feed our program into conventional Perl, it is first compiled into an internal
representation, or bytecode; this bytecode is then fed into almost separate subsystem
inside Perl to be interpreted. So, there are two distinct phases of Perl’s operation:

e Compilation to bytecode and
e Interpretation of bytecode.

This is not unique to Perl. Other languages following this design include - Python, Ruby,
Tcl and even Java.

We also know that there is a Java Virtual Machine (JVM) which is a platform independent
execution environment that converts Java bytecode into machine language and executes
it. If you understand this concept then you will understand Parrot.

Parrot is a virtual machine designed to efficiently compile and execute bytecode for
interpreted languages. Parrot is the target for the final Perl 6 compiler, and is used as a
backend for Pugs, as well as variety of other languages like Tcl, Ruby, Python etc.

Parrot has been written using most popular language "C".

2. Parrot —Installation

Before we start, let’'s download one latest copy of Parrot and install it on our machine.

Parrot download link is available in Parrot CVS Snapshot. Download the latest version of
Parrot and to install it follow the following steps:

¢ Unzip and untar the downloaded file.
e Make sure you already have Perl 5 installed on your machine.

e Now do the following:

% cd parrot

% perl Configure.pl

Parrot Configure

Copyright (C) 2001 Yet Another Society

Since you're running this script, you obviously have

Perl 5 -- I'll be pulling some defaults from its configuration.

e You'll then be asked a series of questions about your local configuration; you can
almost always hit return/enter for each one.

e Finally, you'll be told to type - make test prog, and Parrot will successfully build
the test interpreter.

e Now you should run some tests; so type ‘make test’ and you should see a
readout like the following:

perl t/harness

t/op/basic..... ok,1/2 skipped:label constants unimplemented in
assembler

t/op/string....ok, 1/4 skipped: 1I'm unable to write it!

All tests successful, 2 subtests skipped.

Files=2, Tests=6,......

By the time you read this, there could be more tests, and some of those which skipped
might not skip, but make sure that none of them should fail!

Once you have a parrot executable installed, you can check out the various types of
examples given in Parrot ‘Examples’ section. Also you can check out the examples
directory in the parrot repository.

3. Parrot — Instructions Format

Parrot can currently accept instructions to execute in four forms. PIR (Parrot
Intermediate Representation) is designed to be written by people and generated by
compilers. It hides away some low-level details, such as the way parameters are passed
to functions.

PASM (Parrot Assembly) is a level below PIR - it is still human readable/writable and can
be generated by a compiler, but the author has to take care of details such as calling
conventions and register allocation. PAST (Parrot Abstract Syntax Tree) enables Parrot to
accept an abstract syntax tree style input - useful for those, writing compilers.

All of the above forms of input are automatically converted inside Parrot to PBC (Parrot
Bytecode). This is much like machine code, but understood by the Parrot interpreter.

It is not intended to be human-readable or human-writable, but unlike the other forms
execution can start immediately without the need for an assembly phase. Parrot
bytecode is platform independent.

The Instruction Set

The Parrot instruction set includes arithmetic and logical operators, compare and
branch/jump (for implementing loops, if...then constructs, etc.), finding and storing
global and lexical variables, working with classes and objects, calling subroutines and
methods along with their parameters, I/0, threads and more.

4. Parrot — Garbage Collection

Like Java Virtual Machine, Parrot also keep you free from worrying about memory de-
allocation.

Parrot provides garbage collection.
Parrot programs do not need to free memory explicitly.

Allocated memory will be freed when it is no longer in use i.e. no longer
referenced.

Parrot Garbage Collector runs periodically to take care of unwanted memory.

BiMmPLVYIranrv.L

5. Parrot — Datatypes

The Parrot CPU has four basic data types:
o 1V
An integer type; guaranteed to be wide enough to hold a pointer.
e NV
An architecture-independent floating-point type.
e STRING
An abstracted, encoding-independent string type.
e PMC
A scalar.

The first three types are pretty much self-explanatory; the final type- Parrot Magic
Cookies, are slightly more difficult to understand.

What are PMCs?

PMC stands for Parrot Magic Cookie. PMCs represent any complex data structure or type,
including aggregate data types (arrays, hash tables, etc.). A PMC can implement its own
behavior for arithmetic, logical and string operations performed on it, allowing for
language-specific behavior to be introduced. PMCs can be built in to the Parrot
executable or dynamically loaded when they are needed.

6. Parrot — Registers

The current Perl 5 virtual machine is a stack machine. It communicate values between
operations by keeping them on a stack. Operations load values onto the stack, do
whatever they need to do and put the result back onto the stack. This is easy to work
with, but it is slow.

To add two numbers together, you need to perform three stack pushes and two stack
pops. Worse, the stack has to grow at runtime, and that means allocating memory just
when you don't want to be allocating it.

So Parrot is going to break the established tradition for virtual machines, and use a
register architecture, more akin to the architecture of a real hardware CPU. This has
another advantage. We can use all the existing literature on how to write compilers and
optimizers for register-based CPUs for our software CPU!

Parrot has specialist registers for each type: 32 IV registers, 32 NV registers, 32 string
registers and 32 PMC registers. In Parrot assembler, these are named I1...132, N1...N32,
S1...S32, P1...P32 respectively.

Now let's look at some assembler. We can set these registers with the set operator:

set I1, 10
set N1, 3.1415
set S1, "Hello, Parrot"

All Parrot ops have the same format: the name of the operator, the destination register
and then the operands.

"
@ -unﬁnvlaivlua-!lun

7. Parrot — Operations

There are a variety of operations you can perform. For instance, we can print out the
contents of a register or a constant:

set I1, 10
print "The contents of register I1 is: "
print I1

print "\n"

The above instructions will result in The contents of register I1 is: 10

We can perform mathematical operations on registers:

Add the contents of I2 to the contents of Il
add I1, I1, I2

Multiply I2 by I4 and store in I3

mul I3, I2, I4

Increment I1 by one

inc I1

Decrement N3 by 1.5

dec N3, 1.5

We can even perform some simple string manipulation:

set S1, "fish"

set S2, "bone"

concat S1, S2 # S1 is now "fishbone"
set S3, "w"

substr S4, S1, 1, 7

concat S3, S4 # S3 is now "wishbone"

length I1, S3 # I1 is now 8

8. Parrot —Branches

Code gets a little boring without flow control; for starters, Parrot knows about branching
and labels. The branch op is equivalent to Perl's goto:

branch TERRY
JOHN: print "fjords\n"
branch END
MICHAEL: print " pining"
branch GRAHAM
TERRY: print "It's"
branch MICHAEL
GRAHAM: print " for the "
branch JOHN
END: end

It can also perform simple tests to see whether a register contains a true value:

set I1, 12

set I2, 5

mod I3, I2, I2

if I3, REMAIND, DIVISOR
REMAIND: print "5 divides 12 with remainder "

print I3

branch DONE
DIVISOR: print "5 is an integer divisor of 12"
DONE : print "\n"

end

Here's what that would look like in Perl, for comparison:

$i1 = 12;
$i2 = 5;
$i3 = $i1 % $i2;

if ($i3) {

Parrot

print "5 divides 12 with remainder ";
print $i3;

} else {
print "5 is an integer divisor of 12";

}

print "\n";

exit;

Parrot Operator

We have the full range of numeric comparators: eq, ne, It, gt, le and ge. Note that you
can't use these operators on arguments of disparate types; you may even need to add
the suffix _i or _n to the op, to tell it what type of argument you are using, although the
assembler ought to divine this for you, by the time you read this.

fw" tutorialspoint

9. Parrot — Programming Examples

Parrot programing is similar to assembly language programing and you get a chance to
work at lower level. Here is the list of programming examples to make you aware of the
various aspects of Parrot Programming.

¢ Classic Hello world!
e Using registers

¢ Summing squares

¢ Fibonacci Numbers
¢ Computing factorial
e Compiling to PBC

e PIRvs. PASM

Classic Hello world!

Create a file called hello.pir that contains the following code:

.sub _main
print "Hello world!\n"
end

.end

Then run it by typing:

parrot hello.pir

As expected, this will display the text ‘Hello world!” on the console, followed by a new
line (due to the \n).

In this above example, ‘.sub _main’ states that the instructions that follow make up a
subroutine named ‘_main’, until a ‘.end’ is encountered. The second line contains the
print instruction. In this case, we are calling the variant of the instruction that accepts a
constant string. The assembler takes care of deciding which variant of the instruction to
use for us. The third line contains the ‘end’ instruction, which causes the interpreter to
terminate.

Using Registers

We can modify hello.pir to first store the string Hello world!\n in a register and then use
that register with the print instruction.

.sub _main

10

Parrot

set S1, "Hello world!\n"
print S1
end

.end

Here we have stated exactly which register to use. However, by replacing S1 with $S1
we can delegate the choice of which register to use to Parrot. It is also possible to use an
= notation instead of writing the set instruction.

.sub _main
$S0 = "Hello world!\n"
print $Se
end

.end

To make PIR even more readable, named registers can be used. These are later mapped
to real numbered registers.

.sub _main
.local string hello
hello = "Hello world!\n"
print hello
end

.end

The ‘.local’ directive indicates that the named register is only needed inside the current
compilation unit (that is, between .sub and .end). Following ‘.local’ is a type. This can be
int (for I registers), float (for N registers), string (for S registers), pmc (for P registers)
or the name of a PMC type.

Summing Squares

This example introduces some more instructions and PIR syntax. Lines starting with a #
are comments.

.sub _main
State the number of squares to sum.
.local int maxnum

maxnum = 10

11

fw" tutorialspoint

Parrot

Some named registers we'll use.

Note how we can declare many

registers of the same type on one line.
.local int i, total, temp

total = ©

Loop to do the sum.
i=1
loop:
temp = 1 * 1
total += temp
inc i

if i <= maxnum goto loop

Output result.
print "The sum of the first "

print maxnum

print " squares is
print total

print ".\n"

end

.end

PIR provides a bit of syntactic sugar that makes it look more high level than assembly.

For example:

temp = 1 * 1

Is just another way of writing the more assembly-ish:

mul temp, i, i

And:

if i <= maxnum goto loop

tutorialspoint

12

Parrot

Is the same as:

le i, maxnum, loop

And:

total += temp

Is the same as:

add total, temp

As a rule, whenever a Parrot instruction modifies the contents of a register that will be
the first register when writing the instruction in assembly form.

As is usual in assembly languages, loops and selections are implemented in terms of
conditional branch statements and labels, as shown above. Assembly programming is
one place where using goto is not a bad form!

Fibonacci Numbers

The Fibonacci series is defined like this: take two numbers, 1 and 1. Then repeatedly add
together the last two numbers in the series to make the next one: 1, 1, 2, 3, 5, 8, 13,
and so on. The Fibonacci number fib(n) is the n'th number in the series. Here's a simple
Parrot assembler program that finds the first 20 Fibonacci numbers:

Some simple code to print some Fibonacci numbers

print "The first 20 fibonacci numbers are:\n"

set I1, ©

set I2, 20

set I3, 1

set I4, 1
REDO: eq I1, I2, DONE, NEXT
NEXT: set I5, 14

add 14, 13, I4

set I3, I5

print I3

print "\n"

inc I1

branch REDO
DONE : end

13

fw" tutorialspoint

Parrot

This is the equivalent code in Perl:

print "The first 20 fibonacci numbers are:\n";
my $i = 0;
my $target = 20;
my $a = 1;
my $b = 1;
until ($i == $target) {
my $num = $b;
$b += $a;
$a = $num;
print $a,"\n";
$i++;

}

NOTE: As a fine point of interest, one of the shortest and certainly the most beautiful
ways of printing out a Fibonacci series in Perl is perl -le '$b=1; print $a+=%$b while print
$b+=%a".

Recursively computing factorial

In this example we define a factorial function and recursively call it to compute factorial.

.sub _fact
Get input parameter.

.param int n

return (n > 1 ? n * fact(n - 1) : 1)

.local int result
if n > 1 goto recurse
result = 1

goto return

recurse:

14

fw" tutorialspoint

Parrot

$I0 = n - 1
result = _fact($10)

result *= n

return:
.return (result)

.end

.sub _main :main

.local int f, i

We'll do factorial © to 16@.
i=20

loop:
f = fact(i)

print "Factorial of "
print i

print " is "

print f

print ".\n"

inc i

if i <= 10 goto loop

That's it.
end

.end

Let's look at the _fact sub first. A point that was glossed over earlier is, why the names
of subroutines, all start with an underscore! This is done simply as a way of showing that

15

tutorialspoint

Parrot

the label is global rather than scoped to a particular subroutine. This is significant as the
label is then visible to other subroutines.

The first line, .param int n, specifies that this subroutine takes one integer parameter
and that we'd like to refer to the register it was passed in by the name n for the rest of
the sub.

Much of what follows has been seen in previous examples, apart from the line reading:

result = fact($10)

This single line of PIR actually represents quite a few lines of PASM. First, the value in
register $I0 is moved into the appropriate register for it to be received as an integer
parameter by the _fact function. Other calling related registers are then set up, followed
by _fact being invoked. Then, once _fact returns, the value returned by _fact is placed
into the register given the name result.

Right before the .end of the _fact sub, a .return directive is used to ensure the value
held in the register; named result is placed into the correct register for it to be seen as a
return value by the code calling the sub.

The call to _fact in main works in just the same way as the recursive call to _fact within
the sub _fact itself. The only remaining bit of new syntax is the :main, written after .sub
_main. By default, PIR assumes that execution begins with the first sub in the file. This
behavior can be changed by marking the sub to start in with :main.

Compiling to PBC

To compile PIR to bytecode, use the -o flag and specify an output file with the extension
.pbc.

parrot -o factorial.pbc factorial.pir

PIR vs. PASM

PIR can be turned into PASM by running:

parrot -o hello.pasm hello.pir

The PASM for the final example looks like this:

_main:
set S30, "Hello world!\n"
print S30

end

16

fw" tutorialspoint

Parrot

PASM does not handle register allocation or provide support for named registers. It also
does not have the .sub and .end directives, instead replacing them with a label at the
start of the instructions.

17

tutorialspoint

10. Parrot — Useful Resources

Here are the important links for Parrot Lovers:
o Parrot official websites
This site is maintaining updated information related to Parrot.
e Perl 6/Parrot Mailing List Summaries
This Week in Perl 6! (by Matt Fowles)
¢ Planet Parrot
An aggregator of select Parrot related blogs
e Source Code
Packages & Source Code for Parrot
¢ Tracking Tools
o Parrot Testing Status Tools
Document our testing coverage
o Parrot Issue Tracker
The Parrot Bugtracking System
o Parrot Issue Tracker: Summary Report
Breakdown of tickets by age, platform, etc.
o To-do list
What needs to get done
o Open Patches
Patches to get applied
e Glossary
A glossary of important parrot terms
¢ Patch & Bug Report Submission Information

A brief on patch submission

18

