- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Write four solutions for each of the following equations:
(i) $ 2 x+y=7 $
(ii) $ \pi x+y=9 $
(iii) $ x=4 y $.
To do:
We have to write four solutions for each of the given equations.
Solution:
(i) Given,
$2x+y=7$
Let us substitute $x=0, 1$ and $y=0, 1$
$x=0$
This implies,
$2(0)+y=7$
$0+y=7$
$y=7$
Therefore, $x, y=0, 7$
$x=1$
This implies,
$2(1)+y=7$
$2+y=7$
$y=7-2$
$y=5$
Therefore, $x, y=1, 5$
$y=0$
This implies,
$2x+(0)=7$
$2x=7$
$x=\frac{7}{2}$
Therefore, $x, y=\frac{7}{2}, 0$
$y=1$
This implies,
$2x+(1)=7$
$2x=7-1$
$2x=6$
$x=\frac{6}{2}$
$x=3$
Therefore, $x, y=3, 1$
Hence, the solutions are $x, y=(0,7), (1, 5), (\frac{7}{2}, 0), (3, 1)$.
(ii) Given,
$\pi x+y=9$
Let us substitute $x= 0, 1, $ and $y=0, 1$ to write four solutions.
$x=0$
This implies,
$\pi x+y=9$
$\pi (0)+y=9$
$0+y=9$
$y=9$
Therefore, $x, y=0, 9$
$x=1$
This implies,
$\pi x+y=9$
$\pi (1)+y=9$
$\pi+y=9$
$y=9-\pi$
Therefore, $x, y=1, 9-\pi$
$y=0$
This implies,
$\pi x+0=9$
$\pi x=9$
$x=\frac{9}{\pi}$
Therefore, $x, y=\frac{9}{\pi}, 0$
$y=1$
This implies,
$\pi x+1=9$
$\pi x=9-1$
$\pi x=8$
$x=\frac{8}{\pi}$
Therefore, $x, y=\frac{8}{\pi}, 1$
Hence, the solutions are $x, y=(0,9), (1, 9-\pi ), (\frac{9}{\pi}, 0), (\frac{8}{\pi}, 1)$.
(iii) Given,
$x=4y$
Let us substitute $x=0, 1$ and $y=0, 1$ to write four solutions.
$x=0$
This implies,
$0=4y$
$y=\frac{0}{4}$
$y=0$
Therefore, $x, y=0, 0$
$x=1$
This implies,
$1=4y$
$\frac{1}{4}=y$
$y=\frac{1}{4}$
Therefore, $x, y=1,\frac{1}{4}$
$y=2$
This implies,
$x=4(2)$
$x=8$
Therefore, $x, y=8, 0$
Let $y=1$
This implies,
$x=4(1)$
$x=4$
Therefore, $x, y=4, 1$
Hence, the solutions are $x, y=(0,0), (1, \frac{1}{4}), (8, 0), (4, 1)$.
- Related Articles
- Write two solutions for each of the following equations$x + \pi y = 4$
- Draw the graph of each of the following linear equations in two variables:(i) \( x+y=4 \)(ii) \( x-y=2 \)(iii) \( y=3 x \)(iv) \( 3=2 x+y \).
- Factorise the following using appropriate identities:(i) \( 9 x^{2}+6 x y+y^{2} \)(ii) \( 4 y^{2}-4 y+1 \)(iii) \( x^{2}-\frac{y^{2}}{100} \)
- The reduced form of $36 x^{2}-81 y^{2}$ isi$(6 x+9 y)(6 x-9 y) $ii$(6 x+9 y)(4 x-5) $iii.$(9 x+6 y)(9 x-6 y)$iv. $(9 y-6 x)(9 y+6 x) $
- Write two solutions for each of the following equations$\frac{2}{3} x - y = 4$
- If $x^2 + y^2 = 29$ and $xy = 2$, find the value of(i) $x + y$(ii) $x - y$(iii) $x^4 + y^4$
- Describe how the following expressions are obtained:$(i) 7 x y+5, (ii) x^{2} y, (iii) 4 x^{2}-5 x$.
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following system of equations:$\frac{10}{x+y} +\frac{2}{x-y}=4$$\frac{15}{x+y}-\frac{9}{x-y}=-2$
- Factorize:$4(x - y)^2 - 12(x -y) (x + y) + 9(x + y)^2$
- From the choices given below, choose the equation whose graphs are given in Fig. \( 4.6 \) and Fig. 4.7.For Fig. 4. 6(i) \( y=x \)(ii) \( x+y=0 \)(iii) \( y=2 x \)(iv) \( 2+3 y=7 x \)For Fig. \( 4.7 \)(i) \( y=x+2 \)(ii) \( y=x-2 \)(iii) \( y=-x+2 \)(iv) \( x+2 y=6 \)"\n
- Solve the following quadratic equations:(i) \( x^{2}+x-20=0 \)(ii) \( 9 y^{2}-12 y+2=0 \)
- Write the degree of each of the following polynomials:(i) \( 5 x^{3}+4 x^{2}+7 x \)(ii) \( 4-y^{2} \)(iii) \( 5 t-\sqrt{7} \)(iv) 3
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
