- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Write all possible 3- digit numbers (without repeating the digits) , by using the digits.
(i)6,7,5
(ii) 9,0,2
Solution:
(i) Possible three digit number using the digits 6 , 7 , 5
Take 5 as first number,
567 , 576
Take 6 as first number,
657 , 675
Take 7 as first number,
756 , 765
So, 567 , 576 , 657 , 675 , 756 , 765 are the Possible three digit number using the
digits 6 , 7 , 5
ii)Possible three digit number using the digits 9 , 0 , 2
Take 2 as first number,
209 , 290
Take 9 as first number,
902 , 920
We cant take 0 as first number, because 092 , 029 are two digit number.
So, 209 , 290 , 902 , 920 are the Possible three digit number using the digits 9 , 0 , 2
- Related Articles
- Find the difference between the greatest and the least 5 digit numbers formed by using the digits 6, 2 ,7, 4 ,3 each only once.
- Use the given digits without repetition and make the greatest and smallest 4-digit numbers.a) 2, 8, 7, 4b) 9, 7, 4, 1c) 4, 7, 5, 0d) 1, 7, 6, 2e) 5, 4, 0, 3
- How many 3 digit numbers can you make using digits 2,4 and 0? (using each digit only once)(1) 6(2) 4(3) 3(4) 5
- Simplify and write the answers in exponential forms.(a) \( 3 \times 3^{10} \)(b) \( 5^{2} \times 5^{7} \)(c) \( (-7)^{2} \times(-7)^{7} \)(d) \( 27^{3} \p 3^{9} \)(e) \( \left(25^{0}+5^{0}\right) \times 5^{0} \)(f) \( \left(2^{0} \p 3^{0}\right) \times 4^{0} \)
- List all the three-digit numbers can be formed using the following numbers.(a) 4, 0 and 7. (b) 5, 6 and 9.
- Write the smallest and the greatest 5-digit number using 0, 5, 1, 9, 6.
- Find the zero of the polynomial in each of the following cases:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) are real numbers.
- Write the possible three digit numbers by rearranging the numbers(without repetition) : 2,5,9
- Subtract \( 4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10 \) from \( 18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q \).
- Simplify: \( (-9 \p 3)-(-49 \p 7) \)
- Use the digits without repetition and make the greatest and smallest $4-$ digit numbers: $2,\ 8,\ 7,\ 4$.
- Subtract the following algebraic identities:$3 p^{2} q-3$ from $9 p^{2}-9 p^{2} q$.
- Write the following equations in statement forms:$(i).\ p+4=15$$(ii).\ m-7=3$$(iii).\ 2m=7$$(iv).\ \frac{m}{5}=3$$(v).\ \frac{3m}{5}=6$$(vi).\ 3p+4=25$$(vii).\ 4p-2=18$$(viii).\ \frac{p}{2}+2=8$
- Compare the following numbers: $( 1)\ -7,\ -2$$( 2).\ 0, \frac{-9}{5}$$(3)\ \frac{8}{7}, 0$
- List all the three digit numbers can be made from the digits 0,5,9 without repetition.

Advertisements