What per cent of $ 108 \mathrm{~km} / \mathrm{h} $ is $ 15 \mathrm{~m} / \mathrm{s} $ ?
Given:
108 km/h
To do:
We have to how much percent of \( 108 \mathrm{~km} / \mathrm{h} \) is \( 15 \mathrm{~m} / \mathrm{s} \).
Solution:
108 km/h$=108\times\frac{1000}{3600}$ m/s
$=3\times10$ m/s
$=30$ m/s
Let 15 m/s be x% of 30 m/s.
This implies,
$15=\frac{x}{100}\times30$
$x=\frac{15\times100}{30}$
$x=50$%
15 m/s is 50% of 108 km/h.
- Related Articles
- A man is \( 45 \mathrm{~m} \) behind the bus when the bus start accelerating from rest with acceleration 2.5 \( m / s^{2} \). With what minimum velocity should the man start running to catch the bus.(a) \( 12 \mathrm{~m} / \mathrm{s} \)(b) \( 14 \mathrm{~m} / \mathrm{s} \)(c) \( 15 \mathrm{~m} / \mathrm{s} \)(d) \( 16 \mathrm{~m} / \mathrm{s} \)
- The odometer of a car reads \( 2000 \mathrm{~km} \) at the start of a trip and \( 2400 \mathrm{~km} \) at the end of the trip. If the trip took \( 8 \mathrm{~h} \), calculate the average speed of the car in \( \mathrm{km} \mathrm{h}^{-1} \) and \( \mathrm{m} \mathrm{s}^{-1} \).
- Find the areas of the rectangles whose sides are :(a) \( 3 \mathrm{~cm} \) and \( 4 \mathrm{~cm} \)(b) \( 12 \mathrm{~m} \) and \( 21 \mathrm{~m} \)(c) \( 2 \mathrm{~km} \) and \( 3 \mathrm{~km} \)(d) \( 2 \mathrm{~m} \) and \( 70 \mathrm{~cm} \)
- On a \( 60 \mathrm{~km} \) track, a train travels the first \( 30 \mathrm{~km} \) at a uniform speed of \( 30 \mathrm{~km} / \mathrm{h} \). How fast must the train travel the next \( 30 \mathrm{~km} \) so as to average \( 40 \mathrm{~km} / \mathrm{h} \) for the entire trip?
- A man goes to market with a speed of \( 30 \mathrm{~km} / \mathrm{h} \) and returns back with thespeed of \( 40 \mathrm{~km} / \mathrm{h} \). Find his average speed.
- What do you mean by \( 5 \mathrm{~m} \mathrm{~s}^{-2} \) ?
- Arrange the following in the decreasing order \( 5.05 \mathrm{m}, 0.55 \mathrm{dm}, 20 \mathrm{km}, 75.5 \mathrm{mm} \)
- A park, in the shape of a quadrilateral \( \mathrm{ABCD} \), has \( \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m} \), \( \mathrm{CD}=5 \mathrm{~m} \) and \( \mathrm{AD}=8 \mathrm{~m} \). How much area does it occupy?
- Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
- The height of a person is \( 1.45 \mathrm{~m} \). Express it into \( \mathrm{c} \mathrm{m} \) and \( \mathrm{mm} \).
- A godown measures \( 40 \mathrm{~m} \times 25 \mathrm{~m} \times 15 \mathrm{~m} \). Find the maximum number of wooden crates each measuring \( 1.5 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5 \mathrm{~m} \) that can be stored in the godown.
- A boy walks first a distance of \( 0.5 \mathrm{~km} \) in 10 minutes, next \( 1.0 \mathrm{~km} \) in 20 minutes and last \( 1.5 \mathrm{~km} \) in 30 minutes. Is the motion uniform ? Find the average speed of the boy in \( \mathrm{m} \mathrm{s}^{-1} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
- In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
- Water flows at the rate of \( 15 \mathrm{~km} / \mathrm{hr} \) through a pipe of diameter \( 14 \mathrm{~cm} \) into a cuboidal pond which is \( 50 \mathrm{~m} \) long and \( 44 \mathrm{~m} \) wide. In what time will the level of water in the pond rise by \( 21 \mathrm{~cm} \)?
Kickstart Your Career
Get certified by completing the course
Get Started