- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# What is a regular polygon?

State the name of a regular polygon of

**(i)** 3 sides

**(ii)** 4 sides

**(iii)** 6 sides.

To do:

We have to define regular polygon and state the name of a regular polygon of

(i) 3 sides(ii) 4 sides

(iii) 6 sides.

Solution:

A polygon is a closed plane or two-dimensional figure whose sides are straight line segments.

**Regular polygon:**

A regular polygon is a polygon that has equal sides and equal angles.

(i) A regular polygon of 3 sides is called an **equilateral triangle.**

(ii) A regular polygon of 4 sides is called a **square.**

(iii) A regular polygon of 6 sides is called **regular hexagon.**

- Related Articles
- Arrange the following elements in increasing order of their atomic radii.(a) Li, Be, F, N(b) Cl, At, Br I
- The interior angle of a regular polygon is $156$ . Find the number of sides of the polygon.
- Factorise each of the following:(i) \( 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \)(ii) \( 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \)(iii) \( 27-125 a^{3}-135 a+225 a^{2} \)(iv) \( 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} \)(v) \( 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \)
- Draw a \( \triangle A B C \) in which base \( B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm} \) and \( \angle A B C=60^{\circ} \). Then construct another triangle whose sides are \( \frac{3}{4} \) of the corresponding sides of \( \triangle A B C \).
- (a) What is the minimum interior angle possible for a regular polygon? Why?(b) What is the maximum exterior angle possible for a regular polygon?
- \( A \) and \( B \) are respectively the points on the sides \( P Q \) and \( P R \) of a triangle \( P Q R \) such that \( \mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm} \) and \( \mathrm{PB}=4 \mathrm{~cm} . \) Is \( \mathrm{AB} \| \mathrm{QR} \) ? Give reasons for your answer.
- Draw a \( \triangle A B C \) with side \( B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm} \) and \( \angle A B C=60^{\circ} \). Then, construct a triangle whose sides are \( (3 / 4)^{\text {th }} \) of the corresponding sides of the \( \triangle A B C \).
- How to change the height of br tag?
- Draw a \( \triangle A B C \) in which \( B C=6 \mathrm{~cm}, A B=4 \mathrm{~cm} \) and \( A C=5 \mathrm{~cm} \). Draw a triangle similar to \( \triangle A B C \) with its sides equal to \( (3 / 4)^{\text {th }} \) of the corresponding sides of \( \triangle A B C \).
- Each interior angle of a regular polygon is four times the exterior angle. Find the number of sides in the polygon.
- The length of each side of a regular polygon is 1.3 cm. The perimeter of polygon is 10.4 cm How many sides does the polygon have?
- Construct a triangle similar to a given \( \triangle A B C \) such that each of its sides is \( (2 / 3)^{\text {rd }} \) of the corresponding sides of \( \triangle A B C \). It is given that \( B C=6 \mathrm{~cm}, \angle B=50^{\circ} \) and \( \angle C=60^{\circ} \).
- Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- In a regular polygon each interior is thrice the exterior angle then number sides have?
- How many sides does a regular polygon have if each of its interior angles is 108°?

Advertisements