- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Using factor theorem, factorize each of the following polynomials:$x^3 + 2x^2 - x - 2$
Given:
Given expression is $x^3 + 2x^2 - x - 2$.
To do:
We have to find the given polynomial using factor theorem.
Solution:
Let $f(x)=x^{3}+2 x^{2}-x-2$
The factors of the constant term $-2$ are $\pm 1, \pm 2$.
Let $x=1$, this implies,
$f(1)=(1)^{3}+2(1)^{2}-(1)-2$
$=1+2-1-2$
$=3-3$
$=0$
Therefore $x-1$ is a factor of $f(x)$
Let $x=-1$, this implies,
$f(-1)=(-1)^{3}+2(-1)^{2}-(-1)-2$
$=-1+2+1-2$
$=3-3$
$=0$
Therefore $x+1$ is a factor of $f(x)$.
Let $x=2$, this implies,
$f(-2)=(-2)^{3}+2(-2)^{2}-(-2)-2$
$=-8+8+2-2$
$=0$
Therefore $(x+2)$ is a factor of $f(x)$.
Hence, $f(x)=(x+1)(x-1)(x+2)$.
Advertisements