- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Two parallel sides of a trapezium are $60\ cm$ and $77\ cm$ and other sides are $25\ cm$ and $26\ cm$. Find the area of the trapezium.
Given:
Two parallel sides of a trapezium are $60\ cm$ and $77\ cm$ and other sides are $25\ cm$ and $26\ cm$.
To do:
We have to find the area of the trapezium.
Solution:
Let in trapezium $ABCD$,
$AB \parallel DC$
$AB = 77\ cm, BC = 26\ cm, CD = 60\ cm, DA = 25\ cm$
Through $C$, draw $CE \| DA$ meeting $AB$ at $E$.
$AE = CD = 60\ cm$ and $EB = 77 - 60 = 17\ cm$.
$CE = DA = 25\ cm$
Area of $\triangle BCE$ with sides $17\ cm, 26\ cm, 25\ cm$
$s=\frac{a+b+c}{2}$
$=\frac{17+26+25}{2}$
$=\frac{68}{2}$
$=34$
Area of $\Delta \mathrm{EBC}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{34(34-17)(34-26)(34-25)}$
$=\sqrt{34 \times 17 \times 8 \times 9}$
$=\sqrt{2 \times 17 \times 17 \times 2 \times 2 \times 2 \times 3 \times 3}$
$=17 \times 2 \times 2 \times 3$
$=204 \mathrm{~cm}^{2}$
Draw $\mathrm{CL} \perp \mathrm{EB}$
$\mathrm{CL}=\frac{\text { area of } \Delta \mathrm{EBC} \times 2}{\text { base }}$
$=\frac{204 \times 2}{17}$
$=24 \mathrm{~cm}$
Area of trapezium $\mathrm{ABCD}=\frac{1}{2}$ (Sum of parallel sides) $\times$ height
$=\frac{1}{2}(77+60) \times 24$
$=\frac{1}{2} \times 137 \times 24$
$=137 \times 12$
$=1644 \mathrm{~cm}^{2}$.