- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Two opposite vertices of a square are $(-1, 2)$ and $(3, 2)$. Find the coordinates of other two vertices.
Given:
Two opposite vertices of a square are $(-1, 2)$ and $(3, 2)$.
To do:
We have to find the coordinates of other two vertices.
Solution:
Let ABCD be the given square and $A (-1, 2)$ and $C (3, 2)$ are the opposite vertices.
Let the coordinates of $B$ be $(x, y)$. Join AC.
This implies,
$AB=BC=CD=DA$
We know that,
The distance between two points \( \mathrm{A}\left(x_{1}, y_{1}\right) \) and \( \mathrm{B}\left(x_{2}, y_{2}\right) \) is \( \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \).
Therefore,
\( \mathrm{AB}=\mathrm{BC} \)
Squaring on both sides, we get,
\( \mathrm{AB}^{2}=\mathrm{BC}^{2} \)
\( \Rightarrow (x+1)^{2}+(y-2)^{2}=(x-3)^{2}+(y-2)^{2} \)
\( \Rightarrow x^{2}+2 x+1+y^{2}-4 y+4 =x^{2}-6 x+9+y^{2}-4 y+4 \)
\( \Rightarrow 2 x+6 x-4 y+4 y=13-5 \)
\( \Rightarrow 8 x=8 \)
\( \Rightarrow x=1 \).........(i)
\( \mathrm{ABC} \) is a right angled triangle.
\( \Rightarrow \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \)
\( \Rightarrow (3+1)^{2}+(2-2)^{2}=x^{2}+2 x+1+y^{2}-4 y +4+x^{2}-6 x+9+y^{2}-4 y+4 \)
\( (4)^{2}=2 x^{2}+2 y^{2}-4 x-8 y+18 \)
\( 16=2 x^{2}+2 y^{2}-4 x-8 y+18 \)
\( \Rightarrow 2 x^{2}+2 y^{2}-4 x-8 y+18-16=0 \)
\( \Rightarrow 2 x^{2}+2 y^{2}-4 x-8 y+2=0 \)
\( \Rightarrow 2 (x^{2}+y^{2}-2 x-4 y+1)=0 \)
\( \Rightarrow x^{2}+y^{2}-2x-4y+1=0 \)
Substituting \( x=1 \), we get,
\( (1)^{2}+y^{2}-2(1)-4 y+1=0 \)
\( \Rightarrow 1+y^2-2-4y+1=0 \)
\( \Rightarrow y^2-4y=0 \)
\( \Rightarrow y(y-4)=0 \)
\( \Rightarrow(y)(y-4)=0 \)
\( y=0 \) or \( y-4=0 \)
\( y=0 \) or \( y=4 \)
Therefore, the other points of the square are $(1,0)$ and $(1,4)$.
- Related Articles
- The two opposite vertices of a square are $(-1, 2)$ and $(3, 2)$. Find the coordinates of the other two vertices.
- If two opposite vertices of a square are $(5, 4)$ and $(1, -6)$, find the coordinates of its remaining two vertices.
- If two vertices of a parallelogram are $(3, 2), (-1, 0)$ and the diagonals cut at $(2, -5)$, find the other vertices of the parallelogram.
- Find the area of the quadrilaterals, the coordinates of whose vertices are$(1, 2), (6, 2), (5, 3)$ and $(3, 4)$
- Two vertices of a triangle are $(1, 2), (3, 5)$ and its centroid is at the origin. Find the coordinates of the third vertex.
- $A (3, 2)$ and $B (-2, 1)$ are two vertices of a triangle ABC whose centroid $G$ has the coordinates $(\frac{5}{3}, −\frac{1}{3})$. Find the coordinates of the third vertex $C$ of the triangle.
- Find the area of the quadrilaterals, the coordinates of whose vertices are$(-4, -2), (-3, -5), (3, -2), (2, 3)$
- Prove that the points $A (2, 3), B (-2, 2), C (-1, -2)$ and $D (3, -1)$ are the vertices of a square $ABCD$.
- An equilateral triangle has two vertices at the points $(3, 4)$, and $(-2, 3)$, find the coordinates of the third vertex.
- If the coordinates of the mid-points of the sides of a triangle are $(1, 1), (2, -3)$ and $(3, 4)$, find the vertices of the triangle.
- Find the centroid of the triangle whose vertices are:$(-2, 3), (2, -1), (4, 0)$
- If the coordinates of the mid-points of the sides of a triangle be $(3, -2), (-3, 1)$ and $(4, -3)$, then find the coordinates of its vertices.
- Find the centroid of the triangle whose vertices are:$(1, 4), (-1, -1), (3, -2)$
- If $(0, -3)$ and $(0, 3)$ are the two vertices of an equilateral triangle, find the coordinates of its third vertex.
- Show that the points \( (2,2),(-2,2) \), \( (-2,-2) \) and \( (2,-2) \) are the vertices of a square.
