- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Two bodies of equal masses move with the uniform velocities $v$ and $3v$ respectively. Find the ratio of their kinetic energies.
As given, Two bodies of equal masses move with the uniform velocities $v$ and $3v$ respectively. Let $m$ be the mass of the two bodies.
Therefore, kinetic energy of the body with $v$ velocity $K_1=\frac{1}{2}mv^2$
And kinetic energy of the body with $3v$ velocity $K_2=\frac{1}{2}m( 3v)^2$
Therefore, ratio between the kinetic energies $=\frac{K_1}{K_2}$
Or $\frac{K_1}{K_2}=\frac{\frac{1}{2}mv^2}{\frac{1}{2}m( 3v)^2}$
Or $\frac{K_1}{K_2}=\frac{v^2}{9v^2}$
Or $\frac{K_1}{K_2}=\frac{1}{9}$
Or $K_1:K_2=1:9$
Advertisements