- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The value of $ \left[\left(1-\frac{1}{n+1}\right)+\left(1-\frac{2}{n+1}\right)+\ldots \ldots+\left(1-\frac{n}{n+1}\right)\right] $ is
Given:
\( \left[\left(1-\frac{1}{n+1}\right)+\left(1-\frac{2}{n+1}\right)+\ldots \ldots+\left(1-\frac{n}{n+1}\right)\right] \)
To do:
We have to find the value of \( \left[\left(1-\frac{1}{n+1}\right)+\left(1-\frac{2}{n+1}\right)+\ldots \ldots+\left(1-\frac{n}{n+1}\right)\right] \).
Solution:
$ \begin{array}{l}
\left[\left( 1-\frac{1}{n+1}\right) +\left( 1-\frac{2}{n+1}\right) +........+\left( 1-\frac{n}{n+1}\right)\right] =[ 1+1+....+1( n\ times)] -\frac{1}{n+1}[ 1+2+.....+n]\\
=n-\frac{1}{n+1}\left[\frac{n( n+1)}{2}\right]\\
=n-\frac{n}{2}\\
=\frac{2n-n}{2}\\
=\frac{n}{2}
\end{array}$
Therefore, \( \left[\left(1-\frac{1}{n+1}\right)+\left(1-\frac{2}{n+1}\right)+\ldots \ldots+\left(1-\frac{n}{n+1}\right)\right]=\frac{n}{2} \).
Advertisements