- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# The sides of a triangle are 12 cm, 35 cm and 37 cm respectively. Find its area.

**Given:**

The sides of a triangle are 12 cm, 35 cm and 37 cm respectively.

**To do:**

We have to find the area of the triangle.**Solution:**

We can use heron's formula to find the area of the triangle:

Semi perimeter ( s) $=\ \frac{a\ +\ b\ +\ c}{2}$

Semi perimeter ( s) $=\ \frac{12\ +\ 35\ +\ 37}{2}$

Semi perimeter ( s) $=\ \frac{84}{2}$

Semi perimeter ( s) $=\ 42$

Now,

Area of triangle $=\ \sqrt{s( s\ -\ a)( s\ -\ b)( s\ -\ c)}$

Area of triangle $=\ \sqrt{42( 42\ -\ 12)( 42\ -\ 35)( 42\ -\ 37)} \ \ cm^{2}$

Area of triangle $=\ \sqrt{42( 30)( 7)( 5)} \ \ cm^{2}$

Area of triangle $=\ \sqrt{6\ \times \ 7\ \times \ 6\ \times \ 5\ \times \ 7\ \times \ 5} \ \ cm^{2}$

Area of triangle $=6\times7\times5\ cm^2$

Area of triangle $=210\ cm^2$

**The area of the triangle is 210 cm$^2$.**