- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The sides of a triangle are 12 cm, 35 cm and 37 cm respectively. Find its area.
Given:
The sides of a triangle are 12 cm, 35 cm and 37 cm respectively.
To do:
We have to find the area of the triangle.
Solution:
We can use heron's formula to find the area of the triangle:
Semi perimeter ( s) $=\ \frac{a\ +\ b\ +\ c}{2}$
Semi perimeter ( s) $=\ \frac{12\ +\ 35\ +\ 37}{2}$
Semi perimeter ( s) $=\ \frac{84}{2}$
Semi perimeter ( s) $=\ 42$
Now,
Area of triangle $=\ \sqrt{s( s\ -\ a)( s\ -\ b)( s\ -\ c)}$
Area of triangle $=\ \sqrt{42( 42\ -\ 12)( 42\ -\ 35)( 42\ -\ 37)} \ \ cm^{2}$
Area of triangle $=\ \sqrt{42( 30)( 7)( 5)} \ \ cm^{2}$
Area of triangle $=\ \sqrt{6\ \times \ 7\ \times \ 6\ \times \ 5\ \times \ 7\ \times \ 5} \ \ cm^{2}$
Area of triangle $=6\times7\times5\ cm^2$
Area of triangle $=210\ cm^2$
The area of the triangle is 210 cm$^2$.