- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The ratio between the curved surface area and the total surface area of a right circular cylinder is $1 : 2$. Find the volume of the cylinder, if its total surface area is $616\ cm^2$.
Given:
The ratio between the curved surface area and the total surface area of a right circular cylinder is $1 : 2$.
Total surface area is $616\ cm^2$.
To do:
We have to find the volume of the cylinder.
Solution:
Ratio in the curved surface area and total surface area of the cylinder $=1:2$
Total surface area $= 616\ cm^2$
Therefore,
Curved surface area $=\frac{616 \times 1}{2}$
$=308 \times 1$
$=308 \mathrm{~cm}^{2}$
This implies,
$2 \pi r h=308$
$\frac{2 \times 22}{7} r h=308$
$r h=\frac{308 \times 7}{2 \times 22}$
$rh=49$
$2 \pi r^{2}=616-308$
$=308 \mathrm{~cm}^{2}$
$2 \times \frac{22}{7} r^{2}=308$
$r^{2}=\frac{308 \times 7}{2 \times 22}$
$=49$
$=(7)^{2}$
$\Rightarrow r=7 \mathrm{~cm}$
$h=\frac{49}{r}$
$=\frac{49}{7}$
$=7 \mathrm{~cm}$
Therefore,
Volume $=\pi r^{2} h$
$=\frac{22}{7} \times 7 \times 7 \times 7$
$=1078 \mathrm{~cm}^{3}$