The given figure is made up of 10 squares of the same size. The area of the figure is $ 40 \mathrm{~cm}^{2} $. Find the perimeter of the figure. (1) $ 32 \mathrm{~cm} $ (2) $ 28 \mathrm{~cm} $ (3) $ 24 \mathrm{~cm} $ (4) $ 36 \mathrm{~cm} $"
Given:
The area of the figure is \( 40 \mathrm{~cm}^{2} \).
To do:
We have to find the perimeter of the figure.
Solution:
Let the side of each square be $x$.
This implies,
Area of each square$=x^2$
Area of 10 squares$=10\times x^2=10x^2$
Therefore,
$10x^2=40\ cm^2$
$x^2=\frac{40}{10}$
$x^2=4\ cm^2$
$x=\sqrt{4}\ cm$
$x=2\ cm$
The perimeter of the given figure is the sum of the outer edges of the figure.
Perimeter of the given figure$=16\times2\ cm=32\ cm$.
The correct option is (1) $32\ cm$.
Related Articles If perimeter of the given figure is \( 68.3 \mathrm{~cm}, \) then the sum of \( x+y \) is(1) \( 8.6 \mathrm{~cm} \)(2) \( 8.1 \mathrm{~cm} \)(3) \( 9.6 \mathrm{~cm} \)(4) \( 9.8 \mathrm{~cm} \)"\n
Find the perimeter of the rectangle.$l=35 \mathrm{~cm}, b=28 \mathrm{~cm}$
Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
Find the area of a triangle two sides of which are \( 18 \mathrm{~cm} \) and \( 10 \mathrm{~cm} \) and the perimeter is \( 42 \mathrm{~cm} \).
In figure, if \( \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm} \), \( \mathrm{AP}=12 \mathrm{~cm} \) and \( \mathrm{CP}=4 \mathrm{~cm} \), then find the lengths of \( \mathrm{PD} \) and CD."
Find the perimeter of rectangle whosea) \( l=50 \mathrm{~cm}, b=30 \mathrm{~cm} \)b) \( l=2 \cdot 5 \mathrm{~cm}, b=1 \cdot 5 \mathrm{~cm} \)
Find the perimeter of a triangle with sides measuring \( 10 \mathrm{~cm}, 14 \mathrm{~cm} \) and \( 15 \mathrm{~cm} \).
In the below figure, PSR, RTQ and \( P A Q \) are three semi-circles of diameters \( 10 \mathrm{~cm}, 3 \mathrm{~cm} \) and \( 7 \mathrm{~cm} \) respectively. Find the perimeter of the shaded region."\n
\( \Delta \mathrm{ABC} \sim \Delta \mathrm{XZY} \). If the perimeter of \( \triangle \mathrm{ABC} \) is \( 45 \mathrm{~cm} \), the perimeter of \( \triangle \mathrm{XYZ} \) is \( 30 \mathrm{~cm} \) and \( \mathrm{AB}=21 \mathrm{~cm} \), find \( \mathrm{XY} \).
The difference between the two adjoining sides of a triangle is \( 20 \mathrm{~cm} \), third side is \( 40 \mathrm{~cm} \) and the perimeter of the same triangle \( 120 \mathrm{~cm} \). Find the area of the triangle.
If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
The inner diameter of a cylindrical wooden pipe is \( 24 \mathrm{~cm} \) and its outer diameter is \( 28 \mathrm{~cm} \). The length of the pipe is \( 35 \mathrm{~cm} \). Find the mass of the pipe, if \( 1 \mathrm{~cm}^{3} \) of wood has a mass of \( 0.6 \mathrm{~g} \) .
Find the area of a triangle two sides of which are 18 cm and \( 10 \mathrm{~cm} \) and the perimeter is \( 42 \mathrm{~cm} \).
A table-top measures \( 2 \mathrm{~m} 25 \mathrm{~cm} \) by \( 1 \mathrm{~m} 50 \mathrm{~cm} \). What is the perimeter of the table-top?
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{ZYX} . \) If \( \mathrm{AB}=3 \mathrm{~cm}, \quad \mathrm{BC}=5 \mathrm{~cm} \), \( \mathrm{CA}=6 \mathrm{~cm} \) and \( \mathrm{XY}=6 \mathrm{~cm} \), find the perimeter of \( \Delta \mathrm{XYZ} \).
Kickstart Your Career
Get certified by completing the course
Get Started